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Experimental measurement of the degree of chaotic synchronization
using a distribution exponent
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We investigate the use of a distribution exponent for determining the degree of chaotic synchronization of
two nearly identical systems. This exponent can be easily measured experimentally; its value corresponds
closely to the probability of separation of the two systems, and it is closely connected to the conditional
Lyapunov exponent near the threshold of synchronization. The determination of the degree of synchronization
by a distribution exponent is illustrated in both experimental and simulated systems of three digital phase
locked loops(DPLL’s); one chaotic “feeding” DPLL is an input to two “receiving” DPLL’s. We use the
relationship between the conditional Lyapunov exponent and the distribution exponent to evaluate a model of
our experimental system in which we approximate the feeding chaotic DPLL system with random noise. We
determine the degree of synchronization of the two receiving DPLL'’s by calculating the conditional Lyapunov
exponent. The close relationship between the conditional Lyapunov exponent and distribution exponent at the
threshold of synchronization allows us to compare our experimental measurements of synchronization, which
use the distribution exponent, with the conditional Lyapunov exponents calculated from analysis.
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[. INTRODUCTION synchronization using auxiliary systerf#]. Kim [5] inves-
tigated the link between on-off intermittency and chaotic
A defining characteristic of a chaotic system is that it isSynchronization. Carroll, Heagy, and Pecora studied how the
sensitive to initial conditions. Two identical chaotic systemschaotic signal transmitted between system and subsystem
that start with different initial conditions will never synchro- can be transformed while still maintaining chaotic synchro-
nize. Pecora and Carroll conjectured that a stable subsystefization [6]. Vieira, Lichtenberg, and Liebermai10]
of a chaotic system can synchronize if all conditionalShowed that the concept of synchronized chaos could be ex-
Lyapunov exponents of the subsystem are negative, and thé9nd§d to discrete systems. Many stu_d|es of chaotic synchro-
demonstrated this numerically for the Lorenz and Rosslef!Zation have focused on the potential use for secure com-
systemd1,2]. The results of the simulations were evaluategmunication [7-14. These studies required evaluation of

in two different ways, through the conditional Lyapunov ex- whether two systems are synchronized, which was deter-
mined using the original methods of Pecora and Carroll.

ponents of the subsystem and through examination of the . . .
time evolution of the differences between the chaotic syste '.I'he. most widely used method for examining synchroni-
Mation is a plot of a one variable of the chaotic system versus
and t_he subsystgm. .Pec.ora and CaT“’” also demonstrat e same variable of the subsystéfn-11]. For simulations,
chaotic synchronization in an e.xperlment.al Systeh]. these plots show synchronization through straight lines
They evaluated the synchror!lza'[.lon behavpr of the EXPETiiyhich are visually obvious and carry a clear physical mean-
mental system through examination of the time evolution Ofing. However in experiments, the correlation between two
phase space differences. Since the differences between thgriaples is not exact, exhibiting a spread in the differences
chaotic system and the subsystem decreased to an amotween variableEL1]. This spread arises from the physical
smaller than the scale of the attractor, they concluded that twfferences between the two subsystems being Compared1 or
experimental system synchronized. Further evidence of syrfrom noise introduced separately into the two subsystems.
chronization was provided by a plot of one variable in theComparing such plots allows a qualitative comparison be-
chaotic system versus the similar variable of the subsystentween synchronized and unsynchronized states, but does not
Two synchronized systems, where one variable is identical tallow a quantification of the differences.
the other, produce a straight line. A second method for measuring synchronization is to av-
Since these two papers, many researchers have furtherage the error difference between the two signals and either
explored and generalized the concept of chaotic synchroniise this statistic directly or normalize by the overall signal
zation and proposed uses for this phenomef@®rl5.  strength to obtain a signal-to-noise rat[d3,14. This
Pecora and Carroll's initial model of chaotic synchronizationmethod is quantitative and easy to implement. However, it
was broadened by Rulkogt al. [3] to encompass chaotic does not uniquely measure the degree of synchronization.
systems and subsystems which might not be identical. Thelfor example, two systems which are strongly synchronized
call this “generalized synchronization,” and showed how to but have large system differences may have an average error,
detect it even when two signals exhibit large differenceswhich is the same as two systems which are weakly synchro-
They also developed a new way of detecting generalizedized but have smaller system differences.

1063-651X/98/5(5)/544819)/$15.00 57 5448 © 1998 The American Physical Society



57 EXPERIMENTAL MEASUREMENT OF THE DEGREE ©. .. 5449

In addition to using a straight line synchronization plot, lytical model of our experimental system which we test by
the authors of Ref.6] used the conditional Lyapunov expo- comparing the threshold of synchronization measured by the
nent to evaluate the degree of chaotic synchronization. If thdistribution exponent in the experiment to the threshold of
sign of the largest conditional Lyapunov exponent is negasynchronization measured by the Lyapunov exponent in the
tive, then the system is synchronized. Referef@ealso model. We show how noise can be used to approximate
used the magnitude of the largest conditional Lyapunov exchaos in the model of our experimental system, and how
ponent as an indication of the degree of synchronization. ThEOUrier methods can be used to analyze the result. From the

authors determined these exponents numerically from thEeSults, we calculate the Lyapunov exponent and compare
equations of motion. It is difficult to calculate the conditional the threshold of synchronization to that found in our experi-
Lyapunov exponent from experimental déiz]. ment. We determine the relationship between the distribution

Pikovsky[17] introduced the concept of a distribution ex- exponent and the conditional Lyapunov exponent near the

ponent, which is the ratio of the logarithm of probability threshold of synchronization.
versus the logarithm of separation, to evaluate synchroniza-
tion of orbits of a simple mapping subject to noise. The sign
of the exponent indicates whether or not the two systems are Two identical map$ with different state variablesw and
synchronized, and the magnitude is a measure of the degrge with the same additive noisg but with a small difference
of synchronization. We explored the use of the distributionnoise 8,
exponent to characterize orbit synchronization of mappings
for more general noise distributiof45]. We showed that
this method for evaluating synchronization is related to other
methods. The mean error difference can be calculated once
the probability distribution is known. More important, the @nd
Lyapunov exponent and the distribution exponent change S
sign together. When the distribution exponent equals zero the Xns1=h(X,)+ &— ?“ 2
Lyapunov exponent also equals zero, which is the threshold
of synchronization. The distribution exponent is easier ta,
measure than the Lyapunov exponent in an experiment, a
the Lyapunov exponent is easier to determine in analyzing
known equations. z,=In|r,|. (3
Kuramoto and Nakag18] studied a large array of identi-
cal systems all driven by random forcing which varied By assuming small separations, but large compared| tee
slowly across the array. Interested in self-similarity acrosgleveloped equations in a previous pafis] which describe
this array, they developed equations predicting the probabilthe evolution of the small .separatlons. The increase or de-
ity distribution of separation between two nearby neighbor$réase of the separation is related to the average sfate
that are similar to ours in Ref15]. From the distribution, = (Wn™Xn)/2 by
they predicted the moments of the distribution and how these
moments vary across the array. Both of these predictions

were confirmed through simulations. The same map which describes the individual dynamics of

In this.paper we describe experimenta! r_neasurements cﬁqs.(l) and(2) also approximately governs the average dy-
synchronization using a system of three digital phase lockedsmics for nearly synchronized systems
loops (DPLL'’s). The circuits were directly connected to a '

data acquisition board to make measurements of circuit dy- Snr1=h(s,) + &,. (5)
namics. Digital phase locked loop dynamics have been ex-

tensively studied, so their dynamics is well known The instantaneous Lyapunov exponent, which describes the
[10,11,19-2] These dynamics are well described by a map-change in separation during one time step, is given by

ping equation which allows us to perform accurate and fast N

simulations of the DPLL systems we study. In addition, As=In[h’(sp)]. (6)
DPLL systems have been used in many applications such a

clock synchronization and random number generationTShe average of the instantaneous Lyapunov exponent over a

1. MEASURES OF SYNCHRONIZATION

O

Wny1=h(wp)+ &+ 2 1

ve a separation,=w,—X,,. We use a logarithmic sepa-
tion scale to characterize the degree of synchronization:

Zn+1:Zn+|n|h,(Sn)|- (4)

[19,21]. typical trajectory ofs, is the conditional Lyapunov exponent
In Sec. Il, we review the results of previous work neces- 1 N

sary for the present study. In Sec. Ill, we describe the dy- A= lim = E AL @

namics of an individual DPLL, and of the experimental sys- Now N A=o "

tem of a chaotic DPLL feeding two nearly identical DPLL'’s.

In Sec. IV, we describe the experiment and how the experitt is a measure of the average rate that two nearby systems in
mental data was taken and processed to produce probabiliphase space separate or approach. If the conditional
plots of separation of the DPLL outputs. The values for dis-Lyapunov exponent is negative, the two noisy systems on
tribution exponent are measured from these plots and con&verage approach one another and will synchronize. If the
pared to DPLL simulations, for which conditional Lyapunov conditional Lyapunov exponent is positive, the two noisy
exponents are also measured. In Sec. V, we develop an angystems separate from each other on average and will not
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synchronize. Definitior(7) can be extended to a map, |

=h(s,,Y,), fed by a chaotic signal, by defining 1n(®(2))

0
N

1
A=Ilm — In
N 2,

-1

: 8

d
(9_5 h(sn.Yn) _2

N— oo

-3
wheres,, andy,, are chaotic trajectories of the entire system.

As in our previous paper we use definitiof¥s and(8) to
make theoretical predictions about the synchronization be- -5
havior of two systems subject to noise or chaotic inputs. _g
These definitions are only useful if there is complete and
accurate knowledge of the synchronization system. Then
simulations of one map yield the conditional Lyapunov ex- VT Y —" AR 5 z
ponent and a prediction as to whether two systems will syn-
chronize or not. Such theoretical predictions were made by
. .~ 1n(P(z))

Pecora and Carroll, who also performed experiments proving =,
the link between the sign of the conditional Lyapunov expo- (b)
nent and synchronizatidd,2]. The magnitude of the condi- -1
tional Lyapunov exponent gives the rate of separation or -2
approach, and therefore quantifies synchronization. Systems
with a large negative conditional Lyapunov exponent syn-
chronize rapidly. Similarly, a large positive conditional
Lyapunov exponent indicates rapid desynchronization. Since -5}
measuring the magnitude of the conditional Lyapunov expo-
nent in a synchronizing experiment is difficult, we determine
the degree of synchronization through the distribution expo- -7
nent (defined belowy, which is related to the Lyapunov ex- z

-4

-3

-4

ponent{15]. We showed in Ref.15] that an invariant distri- "ta -tz -0 -8 -6 -4 -2 0
bution exists forr, and that the distribution took the form of
a truncated geometric probability, In (:(z))
(c)
frr)ert re<r<r, €) -1
with other behavior at small separationsand at large sepa- )
rationsr,. The transformation of this distribution to a loga- -3
rithmic measure of separation creates an invariant distribu- _4
tion which has a truncated exponential form, 5
f2(z)=e™ z;<z<z. (10) -6} \
A plot of the logarithm of probability versus the logarithm of "‘

separation has a linear region where Ef) holds. 12  -i2 -10 -8 s “a 2 0 2
An example taken from our previous paper illustrates the
behavior of Eq(10) using a piecewise linear map

FIG. 1. Typical probability distributions of the separation of two

([ —mg+3 mg 1 1 nearly identical maps. The probability and the separation are on
— Xt X<z logarithmic scales.(a) Unsynchronized.(b) Synchronized.(c)
2 4 4 6 o
Threshold of synchronization.
1 1
h(x)=q mx, —g=<x<g (1) sloped line, has a greater probability weight toward larger
separations, indicating that the two systems are unsynchro-
—ms+3 L 1 £<x nized. Figure (b), with a negative slope, implies that the
L 2 4 4 6 7 maps are synchronized because the probability distribution is

with additive Gaussian white noisgon the circle, so that

weighted towards smaller separations. Figufe),lwith a
nearly zero slope, shows two maps on the border between

mappings(1) and (2) are taken mod 1. The synchronization synchronization and desynchronization. We identify the

of these maps depends on the parameteand the variance

slope of the line, the distribution exponantas a measure of

of the noiseé. We plot the logarithm of probability versus synchronization.

the logarithm of separation for mag$) and(2) using map-
ping (11) in Figs. Xa)-1(c) for different parametermg and

The three figures show deviations from geometric
(straight ling behavior, with decreases in probability toward

noise variances. Each graph has a middle region marked bysanall and large scales. The decrease on the right begond

straight line of sloper. Figure Xa), containing a positively

(or ry) is produced by the finite size of the system orbits.
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differences behave similarly to noise differences. These dif- Y | o
ferences only become important when the separation be- [ g
tween the two systems is sufficiently small. Consider the

case of no separatian,=0. Two identical states acted on by FIG. 2. Experimental system of DPLL’s.

two systems with small difference noigewill separate by
I1l. DIGITAL PHASE LOCKED LOOPS

=6,. 12 .
fn+1=on (12 We use a system of three first order DPLL’s connected as

iﬁwown in Fig. 2 to study synchronization experimentally.

ach DPLL contains two components; a voltage controlled

oscillator (VCO) and a sample and hol@&H) amplifier. The

first DPLL is fed by a sine wave, and the second two are fed
y the oscillating output of the first DPLL. Legi(t) represent

he incoming signal. The SH component takes a saniple

of the incoming signal at time, :

The separations between the pairs of systems shown
Fig. 1 are never exactly zero, but, wher z;, the magni-
tude of the difference noiséis larger than the separation
between the two systems and Ed2) will hold approxi-
mately. The difference noise forces a finite separation of th
two systems and the boundariesand z; are directly pro-
portional to é.

Differences between the two systems due to differences in da=g(t,). (17)
parameters can also be considered as a form of difference " "
noise[17]. Consider two systems containing a parameter The value of this sample controls the behavior of the VCO.
which differs in each system by a small amount The VCO oscillates at a frequency proportional to the

sampled voltage,

Whi1=h(wy,a+e)+§, (13
f=fo(1+by). (18
and . L : . .
This oscillation is often modeled to be sinusoidal, but in an
Xni1=h(X,,a—e)+&,. (14) experimental system it is more Ii_kely to be either a square or
triangular wave. A new sample is taken by the SH amplifier
Sincee is small, we can expanid arounda: after the VCO completes one full oscillation. The time be-
tween samples is 1/ and the new sample time is
J
Wn+1=h(Wy,a) + &+ — h(w,,a)e (19 _
Ja tn-%—l tn+ f0(1+ bg(tn)), (19)
and which describes the dynamics of the DPLL. We consider the
p case where the incoming signg(t) is a sinusoid with time
Xn11=h(Xy, @)+ &— — h(X,,a@)e. (16) normalized_ so that the ospillation freqyency is unity. pr
da the dynamics of the DPLL is fully described by the mapping
equation
Because the third terms in Eq45) and(16) are not constant
but instead depend on the random variablesandx,,, they _ 1
act like a difference noisé. 1=t + (20

. ht R fo(1+b sin(2ty))”
Besides deriving the form of the probability distributions,

we also demonstrated in Refl5] that the conditional Becausey(t) is periodic with unit period, the timets, sepa-
Lyapunov exponent and the distribution exponent changeated by integers are equivalent states, which we transform
sign together, establishing a correspondence between the timto the phase variablé,=t,, mod 1, giving
measures of synchronization. All the calculations were for

maps with additive noise. We also showed synchronization _

plots for two nearly identical maps fed with chaos. They Pn+1= bnt fo(l+b sin(2m7e,))”
exhibited the same general bounded exponential probability

distribution behavior, and we hypothesized that the distribuA study of Bernsteirj21] explored the dynamics of this sys-
tion exponent could also be used to measure the synchroriiem, the boundary of invertibility, and the regions of regular
zation behavior of chaotically fed systems. We examine thisind chaotic behavior. Figure 3 shows the regions of regular
hypothesis here, by obtaining probability plots from a cha-and chaotic behavior by plotting the Lyapunov exponents
otic experimental system. These experimental probabilityobtained from simulations of Ed21) over the ,,b) pa-
plots exhibit the same bounded exponential distribution berameter plane. We operate our fiffeeding”) DPLL at a
havior. chaotic point in parameter spadg,;=0.714 andb;=0.28.

(21)
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FIG. 4. The typical dynamics of a first order DPLL with param-
. etersf;=0.714 andb=0.28.(a) Sinusoidal input(b) Typical out-
put of the DPLL.(c) Frequency of the DPLL output. The three
values labeled on the vertical axis arg{1—b.0, o, andfy(l
+bmay, respectively. Vertical lines show the sampling times, at
: which the DPLL changes to a new frequency.

* N quency at the beginning of each oscillation period. The in-
0.6 0.8 variant distribution of these frequencies is shown in Fig. 5.
This distribution is fractal because of the chaotic nature of

FIG. 3. Parameter space stability diagram of a first order DPLLJ[he system. From the frequency gi(t), we can determine

with sinusoidal input(a) Negative Lyapunov exponent&) Posi- the phase of the signal:
tive Lyapunov exponents. The darker the dot, the larger the magni-

t
tude of the Lyapunov exponent. G(t)Z(J f(t")dt’ + 0(0)) mod 1. (22)
0

In Fig. 4(a), we mark sampling timeévertical lines on the

sinusoidal input to the DPLL, which occur at the maximum Because the frequency stays fixed for an entire oscillation the
of the VCO output. The VCO outpui.(t) is a triangular discontinuities in phase only occur at one particular phase
wave as shown in Fig.(8). Figure 4c) shows how the fre- value which we define to be zero, when the DPLL takes a
guency ofg.(t) changes in a discrete way to a new fre- sample. The two “receiving” DPLL’s are fed by the chaotic
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signal g.(t). These DPLL’s have parameter§j(,b) and o 0002

(f3,,b?). In order to study synchronization, we tune the two
loops so thatfj, ~f3 ~f, and b}~b?~b,. As noted in -0.0004
Egs. (15 and(16), small parameter differences are modeled _; go06
through the use of additive difference noise. Each receiving

DPLL is described by Eq19), with g.(t) as input for both ~0.0008
and with difference noise5/2 added to one equation and ~0.001
subtracted from the other:

FIG. 6. Plot(a): the frequency voltage characteristic for the

1 1 1 N VFC320. Plot(b): the frequency error as a function of frequency as
th 1 =t,+ W+ > (23)  measured between two VFC320's tuned to have nearly identical
or (140 gc(tr)) frequency voltage characteristics. The region between the leftmost
1 P and rightmost vertical lines shows the greatest frequency range of
_ n (24) “receiving” DPLL operation.

2, =t2+ =,
ML fo(1+Db,ge(td) 2

r(t2)=ming(|t2—th)). (26)
IV. EXPERIMENT

Appendix A contains a description of our experimental The time differences are measured in increments of a 10-

realization of Eqs(23) and(24). In the experimental system MHz clock used by our data acquisition board. The highest
the circuits making up the two DPLL'’s are not exactly iden- frequency of our receiving loops is 4800 Hz, making our
tical. One limiting factor is that the VCO's contained in each Measurement resolution at worsk30~*.
circuit have slight nonlinearities which differ from each ~ We take 10 000 time samples for each receiving loop, and
other. It is also difficult to tune the parameté(ﬁ and br to convert this data into a prObab|l|ty distribution. At every
be identical in the two circuits. A typical plot of the voltage Sample time we determine the difference between the two
versus frequency characteristics of one DPLL is shown iHOOpS and order this list of differences from smallest to |arg'
Fig. 6(a), and the typical error between two of them is shownest. LetN-(r) represent the number of separations in this list
in Fig. 6b). The error is measured as the difference betweeftess than or equal to the separationLet N, be the total
the frequencies produced by each VCO divided by the averaumber of separations in the list. R(®) represents the
age frequency of the two VCO's. Also marked on the plot isprobability of some event, arid is the random variable rep-
the center frequenc;, and the range of frequencies used in resenting the separation, then
our experiment. We were able to make the two DPLL'’s simi-
lar to one part in one thousand. We model the differences N<(r)
between the two systems in our simulations with a difference Fr(N=P(R=<r)=—7 (27)
noise & that is white and uniformly distributed between !
—0.001 and+0.001.

We determine differences between the dynamics of th
two receiving loops experimentally by measuring the sam-
pling timest! andt2. We define the difference between the '°°P:

two loops to be the time difference between one sample and '[hroughltr:_e e%lﬁ“.tg Itr'] EC]EZD'tYCV; geng&;ﬁe_ﬁ? a?proxp
its nearest neighbor in the other loop’s sample space: mate cumulative distribution functidRg(r) - 1S Tunc-

tion is discrete in both separation and probability, increasing
r(t})=min,(Jt1—t2)) (25) in multiples of 1N, at integer_ values which represent mu_I-

tiples of the 10-MHz clock. Figure 7 shows a representative
and cumulative distribution function. We take the logarithm of

epresents the probability that any particular sample of one
oop will be within r clock ticks of a sample by the other
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sured by 10-MHz clock ticks.

] ] ) . .. FIG. 8. Logarithm of the approximate derivative of the cumula-
the abscissa of this function to generate a cumulative distrigye gistributionF,(2).

bution of the logarithm of the separation probability. If

Z=In(R), (28)  The measurements and the transformation of the experimen-
tal data are more straightforward than estimating the
then Lyapunov exponent from experimental d@i#].
The experimental figure is also analogous to Fig. 1 at the
Fz(2)=P(Z<2)=P(In(R)<2z)=P(R<e*)=Fg(e%). boundaries of the exponential region. The probability density

decreases rapidly as separations increase to near the system
size. The probability density also decreases rapidly as sepa-
rations become smaller than the magnitude of the effective
difference noise. Note that the magnitude of the effective
d difference noise in the experimental system is larger than
f,(z)= 0 F,(2), (30) that in the simulated mapping system, and therefore the ex-
ponential region is smaller in Fig. 9 than in Fig. 1.
We have determined the synchronization behavior and
carried out quantitative synchronization surveys in the pa-
f,(z)dz=P(z<Z<z+d2) (31) rameter space of our two receiving I_DPLL’s. We expect the
synchronization behavior of the receiving DPLL'’s to change
is the function used in Eq10) to describe the distribution @s the parameteffy, andb, are varied. We use the distribu-
exponent. Since we have a discrete approximation to the cdlon exponent to measure the degree of synchronization at
mulative distribution functiorF,(z), we take the derivative Many points in parameter space, and make a contour plot of
of this function numerically. We find the derivative at a dis- the experimental distribution exponent valuesn Fig. 10.
crete point on the cumulative distribution function by taking The bold line on this plot is the threshold of synchronization
that point and its two adjacent points, constructing an apwhere the distribution exponentequals zero. The region to
proximate polynomial between these points, and taking théhe upper left of this bold line is synchronized and the region
derivative of the polynomial at the center point. We approxi-to the lower right is unsynchronized, with the contours sepa-
mate the derivative at every data point along the cumulativéated by values of=0.25. The largest distribution exponent
distribution function. To see more clearly the exponentialPresentin Fig. 10 is unity. This limit, as shown in Appendix
region, we take the logarithm of the numerical derivatives
which estimate the density functidiy(z). Figure 8 shows 1n(£;]
the logarithm of the transformation by Eq29) and (30) of 0
the data shown in Fig. 7. Figure 8 is noisy because of the 4 5
relatively small size of our data set. To smooth it, we sweep
a window of width 0.5(in z) across the figure computing the

running average of all values which lie within the window. -1.5
Typical results of this averaging is shown in Fig. 9. -2 —_

The derivative of the cumulative distribution function yields
the probability density functioh22]

where

The logarithmic scale fof in Fig. 9 makes the bounded
exponential behavior in the experimental probability distri-
bution stand out as a linear region in the plot. Similar to Fig. -3
1, this linear region gives an application of the analysis of _;
our previous paperl5] to an experimental system. We use
the slope of the linear region, which is the distribution expo- 2 3 4 5 6 7 B~
nent, as a measure of the degree of synchronization. The
results shown in Fig. 9 describe an experimental system on
the threshold between synchronization and desynchroniza- FIG. 9. Running average of the distribution shown in Fig. 8, and
tion. This figure is obtained strictly from experimental data.an the approximate density functida(z).

-2.5
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FIG. 12. Contour plot of the conditional Lyapunov exponent
FIG. 10. Contour plot of experimental measurements of the disdetermined from computer simulations of the experimental system.
tribution exponent in thd, b, parameter plane. The bold contour The contours change in increments of 0.25, with the bold contour
represents the threshold of synchronizaton0. Toward the upper indicating\ =0.
left of the plot, the contour lines represent decreasing values of the

distribution exponent and are separated by increments of 0.25. T ether, those measures should match at the threshold of syn-
ward the lower right, the contour lines increase in increments o hronization\ = o= 0, which can be seen by comparing the
0.25. bold lines indicatingc=0 andA=0 in Figs. 11 and 12.
These curves are qualitatively similar to the experimental
curve of =0 in Fig. 10, with some relatively small differ-
ences. We can therefore determine synchronization behavior

Ftor comparlsondv;/ﬁ plothln_Flgl. %.1’ thefd'smbm:jo(gg)(po'directly from experimental data independent of model equa-
nents as measured through simulations of E2@. an " tions. In addition, at the threshold of synchronization, mea-

For t.h.e same mapping equations, we can _also pompute tr%‘ﬁrements of synchronization using the distribution exponent
conditional Lyapunov exponent which is, given in Fig. 12.

Si the t ‘ hronizati h ; tcan be compared to determinations of synchronization from
ince the two measures of synchronization change sign Qg4 equations using the conditional Lyapunov exponent.

B, results from our experimental configuration using two re-
ceiving loops.

0 0.2 0.4 0.6 0.8
1 1

V. ANALYSIS

We develop a model of our DPLL system using a random
feeding signal in place of the chaotic one. In our analysis we
calculate the conditional Lyapunov exponent to determine
the synchronization behavior of our model, because it is
more straightforward than a calculation of the distribution
exponent. Despite predicting synchronization behavior
through the conditional Lyapunov exponent and measuring
synchronization behavior through the distribution exponent,
0.4 0.4 we can compare prediction with experiment near the thresh-
old of synchronization, where they give similar results.

To analyze the synchronization behavior of DPLL'’s, we
0.2 0.2 model the frequency of the incoming sigria{t) as a ran-
dom Ornstein-Uhlenbeck procef&3]. Using this model the
frequency of the signal being received by the DPLL’s will
always be Gaussigr22]. It is also time invariant, so a con-

5 ) " G o8 stant mean and an autocovariance functR() will com-
b pletely characterize it. The medg; of the frequency is cho-
sen to be the same as that of the chaotic feeding signal. In

FIG. 11. Contour plot of distribution exponent determined from Our experimental and simulated systems, the signal fed into
simulations of the experimental system. The contours change ithe two receiving DPLL's was produced by a sinusoidally
increments of 0.25, with the bold contour indicatiog- 0. driven DPLL with parameter§y;=0.714 andb;=0.28. The

NN

for
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R At
0.02 0=A0+ 49(0)=f0 F(t’)dt' +6(0). (35
0.015
The integral of this process is a Gaussian random variable.
0.01 We determine the mean and variance of this variable as a
function of At in Appendix C by using the standard charac-
0,005 teristics of the integral of the Ornstein-Uhlenbeck process
[23]. These characteristics are a functionfgf, A, 7, and
- o At, and the frequency(0) at the instant of the sample. We
W 8 —Tee 12 12 take the expectation of the mean and variance over the ran-
dom frequency variabl&(0), sothat® does not depend on
-0.005 f(0), anddetermine
FIG. 13. Autocorrelation ploR(t) of the frequency of the out-
put of the “feeding” DPLL (dark curve. The exponential curve (O(AL))=6+1qsAt, (36)
(light line) is the best fit toR(t) in the least squares sense as the
time constantr is varied. and
frequency distribution of this chaotic signal, shown in Fig. 5, (O(ADH—(O(AL))?=2A7(At—7+ 71 2V7). (37)

has a mean of,;=0.687.

The autocovariance function depends on the separation ifrom Eq. (19), the relationship betweeAt and 6 in the
time between two samples, and indicates the covariance beeceiving DPLL is
tween two samples. For the Ornstein-Uhlenbeck process the

autocovariance function decays exponentially, so that the Atet ) 1 1
frequency between two samples is strongly correlated if the Tt T b g for(L+D,gi(0))
samples are taken close together in time, and weakly corre- (39)

lated if the samples are taken far apart in time. Two param-
eters are needed to uniquely specify this exponential curveje sybstitute Eq(38) into Eq.(36) to determine the mean of

the varianceA and correlation timer: the new phase in terms of the previous sample
R(t)=Ae U". (32 o for
0))=0+ ——————. 39
(OO =0 £ T bg(6) @9

We setA=0.0193, which is the variance of the distribution
shown in Fig. 5. The autocovariance function of the chaoticrhe variance of the new phase is found similarly by sub-
signal we are approximating is shown in Fig. 13; we deterstjtuting Eq.(38) into Eq. (37),

mine 7 by fitting it with an exponential to determine the

mean square error best fit correlation time0.870. The

exponential associated with this correlation time is also v(0)=2Ar7 T Arbacon T+ 7€
shown in Fig. 13. By integrating the random frequency vari- or( 19r(6))

ableF over time,

U= for(L+byg(O))/ 7|
(40)

: Equations(39) and (40) completely describe the stochastic
O(t)= f F(t')dt’ +©(0) |mod 1, 33 map Fhat mode]s our sy§tem. Cpn3|der the random variable
® ( 0 () ( )) 33 0, with probability density functlorf@)n(a) mapped by the
stochastic mapEgs.(39) and(40)] to a new random variable

we determine the random variable representing the phase 6f,.; with probability density function ’é,nﬂ(e”), where

the feeding signal. The value of the random signal is relateghe double-primed variables are defined below and in Appen-
to the phase of the random signal through the shape of thgx D \We seek an invariant distribution

“feeding” wave form g;(6). In our model
fo, (0)=T15 , (8"). (41)
9i(6)=T(6)= 1-4(¢mod 1) 0<6 mod 1<0.5 n
f = =
3+4(f# mod 1) 0.5<6 mod 1<1.34 The random variable®. and ©.., exist on the circle
(34 [—3,3), and their density functions have domdin 3,3).

The distributions for®, and ®,,,, in this circular domain

The map that evolves the receiving DPLL from a phas€an pe expressed in terms of Fourier coefficientandb,,
sampled on the random input signal to a new phase on th&nd a” andb”:
n n-

random input signal is a function of the nonranddor

“sure”) variable #(0). Because the input signal is random, a o w

the map returns the random varialde From Eq.(33), O is fo(0)= 24 a.cog 27N 6) + b.sin(2mné

the integral of the Ornstein-Uhlenbeck process over the time ®"( ) 2 nzl ncos2mno) nzl nSIN(2mn o),
At between one sample and the next, (42
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Y - C% 8 15 13 ]
0 . s s , )
fe 0)=—+ a'cog2mwno")+ b'sin(2mwné").
bral 77 4 &, Scos2m) T Z, Bisnzme) W g
4 =
“3 T=|ti% ti,bl 13 t??z : (51)
If % 192 1By 9%
a,=a (44) i i
we can express Eq$49) and(50) in the compact form
and =~
7 =T-f,. (52)
bn=b:, (45) t+1 i

The Fourier vectorfT)i and its associated density function

then Eq.(41) will hold, and the invariant distribution will will be invariant when

have Fourier coefficients given by Eg&l4) and (45). In

Appendix D, we decompose the map into a nonstochastic - -~

and a stochastic steps. Using the nonstochastic step, we f0i+1:f9i' (53
transform the Fourier coefficients 6§ () into the Fourier

coefficients of an intermediate distributidij(6’). We ex-  The invariance will exist if the matri¥ has an eigenvalue
press the stochastic step by transforming a Gaussian distiequal to unity. The vector associated with the unity eigen-
bution on the real line to a distribution function on the circle: value contains the Fourier coefficients of the invariant den-
sity function. We can use these coefficients to reconstruct the
o . density function through Eq$42) or (43). N
el&+iyz], (46) We choose where to truncate the infinite maffiby first
noting that accurate approximations of narrow density func-
tions by a Fourier series requires large numbers of coeffi-
The Fourier coefficients of Eq46) are cients. The smallest varianeg,;, of Eq. (40) sets a lower
bound to the width of the invariant distribution, and we limit
£ (v) =2 2m'm* (47)  the size of the infinite matrix based on the distributidt)
with parameteb n, . If we choose to limit the length df, to

and N, whereN is the smallest integer, such that

&(v)=0, (48) 0.01= £(v in) =28 27 Nvrmin, (54)

we are guaranteed that any density function coefficients
gdreater tharN will represent less than 1% of overall prob-
ability. We illustrate the procedure for a system with a ran-
sdom frequency triangular input signal

91O (1))=7(0(1)) (59

where the superscrip@ andb refer to the cosine and sine
terms, respectively. Finally, using the stochastic transform
tion (see Appendix [ we transform the Fourier coefficients
of the intermediate distribution to the Fourier coefficients o
the final distribution. We find a linear relationship

in which ©(t) is the integral of the Ornstein-Uhlenbeck pro-
cess with parameter&=0.0193 andr=0.870, and with a
receiving DPLL having parametefg, =0.85 andb,=0.45.
The minimum of Eq.(40) for this set of parameters is

a;;: tﬁgao’l' mE:l tﬁﬁwam+ mE:l tﬁﬁqu (49

and
Umin=0.018. (56)

n__s+ba ba bb
b”_t”0a0+m2:1 tnmam+mE:1 tmOrm - (50 Using Eq.(54), we determine that the fourth Fourier coeffi-
cient of the noise never exceeds 0.01. We choose vettors

The coefficients in Eqs.(49) and(50) are given by integrals which have nine components. Usm:g numerical integration

(D36)—(D41) derived in Appendix D. Defining the matrix ~ and Egs.(D36)—(D41), we calculateT, and determine its
eigenvalues to be

aH
20 b? {1,0.434;-0.0036+ 0.046,—0.0036- 0.0046, — 0.0063,

1 1
fo=[31], T4 = a1, —0.0021;-0.0015<10 4, <10 4. (57)

b, b5
: : The eigenvector associated with the eigenvalue 1 is
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0.2 0.4 0.6 0.8 1°
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FIG. 14. The solid curve is the invariant probability density
function of the phase sampled by a DPLL with parametigys
=0.85 andb,=0.45 receiving a random frequency signal, which is o o
Ornstein-Uhlenbeck process(;=0.687, A=0.0193, and 7 o 02 0.2 06 0.8
=0.870. Computer simulation of the density function is indistin- by
guishable from the solid curve. The dotted curve is the invariant o
distribution of the phase sampled by a DPLL with paramefgys FIG. 15. Contour plot of conditional Lyapunov exponent deter-

=0.85 andb, = 0.45 receiving a chaotic signal. The chaotic signal mined analytically, from invariant distributions. The contours
is produced by a “feeding” DPLL with parametefg, =0.714 and change in increments of 0.25, and the bold contour line identifies
b,=0.28 fed by a regular sinusoidal signal with frequency 1. A=0.

f .=[2,—0.401,0.0547% 0.136 - 0.036—0.001, 12
invar= [ }\—f AYO)fg(0)d0, (62)
—0.015,0.001,]. (58 12

Vr\1/e use these Fourier cofefficignts r::md (3] tg det?'rmline _Numerical integration of Eq(62) using the invariant distri-
the invariant distribution function shown as the solid line in bution shown in Fig. 14 gives =0.0737. The simulation of

Fig. 14. The invariant distribution of a simulation of the_the deterministic chaotic system gives-0.0879. We repeat

same system cannot be distinguished from the solid line "Bhe process of calculating approximate invariant distributions
Fig. 14. The parameters of the random process were the beg

fit model for a feeding signal from a chaotic sinusoidally fed hd evaluating E¢t62) at many points in the b, param-

. L eter plane to obtain the contour plot of the conditional
DPLL. For comparison we also plot, as dots in Fig. 14, the, P P

invariant distribution of a simulation of the chaotically fed Lyapunov exponent shown in Fig. 15, which can be directly

L . ; . d with Fig. 12 produced by simulation. Unlike th
DPLL system. We find it easiest to determine the synchronlpOmpare w g producsd by simuration. Lniie the

. ; . simulation in which we can also measure the distribution
zation behavior of the randomly fed system analytically
through the conditional Lyapunov exponent. This exponen
depends only on an invariant distribution, while analytical
calculation of the distribution exponent requires an explicit
knowledge of the evolution of the system over time. The
conditional Lyapunov exponemnt is a weighted average of
the instantaneous Lyapunov exponent. For the random
frequency map,

exponent to obtain the contour plot Fig. 11, which can be
Hirectly compared to our experimental Fig. 10, we cannot
produce a contour plot of distribution exponent from our

analysis. Even though we cannot easily predict the distribu-
tion exponent, and cannot easily measure the conditional
Lyapunov exponent, we can make direct comparisons be-
tween the bold lines in Figs. 10 and 15 because the two
measures are identical at the threshold of synchronization.

d Through this method, we conclude that our model is a good
AN )= In( a9 (O(0)) ) (59) approximation of the experiment.
If we define local Lyapunov exponents to be the running
and, for the deterministic chaotic map average of the instantaneous Lyapunov exponents
dén+1 j+N-1
1 = 1
A(dn)=In ‘ don || (60) AJ'N:N 2 AL (63
n=j
These expressions are the same, so that
forb, T7(8) and then define the limiting varianae of local Lyapunov
1 — R —
A (6)=In| |1 fo (17 b,7(0))2 ) (62 exponents to be
To calculate the conditional Lyapunov exponent, we take the v=lim NvarAN), (64)

expectation ofA! over the invariant distribution N0
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o be used to predict the slope roughly. We approximatey
0.75 the variance of the instantaneous Lyapunov exponent which
we calculate similarly to Eq62),
0.5
112
0.25 v=Ilim N var(AN)~var(A1)=f (AY(0))*fo(6)d6.
N— oo -1/2
-0.8 -0.6 -0.4 -0.2 0.2 0.4 2 (67)
-0.25
These results are contained in column 3 of Table I.
-0.5
-0.75 VI. CONCLUSION AND DISCUSSION

We used a system of three DPLL’s to study chaotic syn-
chronization both experimentally and analytically. One
FIG. 16. Plot of the distribution exponent vs the conditional ‘feeding” DPLL produced a chaotic signal which was the
Lyapunov exponent. Both exponents were measured from simuldnput for the other two “receiving” DPLL’s, which were
tions of “receiving” DPLL’s fed by Ornstein-Uhlenbeck random nearly identical to each other. In certain parameter regimes,
frequency processes. The longer path fikgs=0.35 and varie®, , we observed synchronization between the two receiving
while the shorter line fixe$,,=0.75 and varie®, . DPLL’s. A linear scaling region in a plot of log of probabil-
ity versus the log of separation gives a measure of the degree
the distribution exponentr is related to the conditional of synchronization and the magnitude of the system differ-
Lyapunov exponenk near the threshold of synchronization ences. The slope of this line is the distribution exponent

by [15] which quantifies the degree of synchronization: the more
positive the slope, the more the two systems are unsynchro-
2\ nized; the more negative the slope, the more the systems are
o=—. (65) .
v synchronized.

We compared the degree of synchronization in our experi-
We determine how the distribution exponent varies with themental DPLL system with the degree of synchronization in
conditional Lyapunov exponent near o=0, by taking the the equations that simulate the experiment using the distri-
derivative of Eq.(65) with respect to\ and then setting. bution exponent. For the simulation, we also computed the

=0: Lyapunov exponent. We developed a model of the DPLL
system by replacing the chaotic output of the first DPLL with

do 2 66 a random frequency process. We analyzed the synchroniza-
dn| FO_E' (66) tion behavior of this model through the conditional

Lyapunov exponent, and showed that the results were in

We test Eq.(66) through simulation by varying the param- good agreement with the numerical simulation. Thu_s we con-
eterb, at a particular value of,,, so that we cross the Cluded that the model could be used to approximate the
threshold of synchronization, measuring the conditional-yapunov exponent of the simulated system. The conditional
Lyapunov exponent and the distribution exponent along thig-yYapunov exponent of the model was then compared with
path. In Fig. 16, we show the relationship between the twxperimental values of the distribution exponent near the
measures of synchronization along two paths=0.35 and  threshold of synchronization, where the theory relates the
fo,=0.75. We measure botlr and \ as they change sign WO measures of synchronization giving reasonable agree-
together, and from these measurements calculate the valuBtnt. We concluded that a chaotic input can be replaced by
of da/d\|,_o shown in column 1 of Table I. We compare Noise for modeling our synchronizing system.
the measured values of the slopes with predictions resultin% The contour plots of distribution exponent in Figs. 10 and
from the use of simulated measurements aiithin Eq. (66) 1 differ most from the contour plots of conditional
shown in column 2 of Table I. Our analytical model can alsoLYapunov exponent in Figs. 12 and 15 in the lower right
corner of the plots, where the two systems are strongly un-
TABLE I. Comparisons of the values afo/d\ |, _, measured synchronized. This aberration can be overcome by using
from the plot in Fig. 16, the values predicted by E66) through ~ groups of three or more systems. One can define an average
simulation measurement of and the values predicted by EG6) separation for larger numbers of nearly identical systems,
through the approximate predictions wffrom analysis. and study the behavior of the density function describing this
separation[17]. The maximum distribution exponent pos-

Condition for do do do sible for these larger groups of systems increases beyond
A=0=0 an ar a unity, and we expect large values of the distribution and
Measu;\e:c(j) trom PredAiZted Predict;:é)from conditional Lyapunov exponent to be in closer agreement.
for b, i . ) The scope of this paper only encompassed measurement
Simulation by v analysis o " A
of the synchronization of the two “receiving” systems. Be-
0.35 0.134 1.4 1.6 2.6 cause the signal from the feed differs from the output of the
0.75 0.261 0.82 0.91 0.89 receiver, synchronization of the “receiving” systems with

the “feeding” system falls into the realm of generalized syn-
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FIG. 17. Experimental circuit diagram. All unlabeled capacitors are bypass capacitors for the power supplies angfare 0.1

chronization, which we did not address. However, our ex-angular waves produced are not symmetric like those of IC
perimental and simulation systems were arranged almositf. The voltage that determines the frequency of this wave
identically to those used by Abarbanel, Rulkov, and Susheomes from a sample and hold amplifi@€2). The param-
chik to measure generalized synchronization using the auxeters of all DPLL's are tuned by using the potentiometers
iliary systems approack#]. They concluded that synchroni- (P1-P4) attached to IC2P1 andP2 changef,, while P3
zation of the two “receiving” (or responsgsystems with and P4 changeb. When the control input of ICZ is low it
each other indicates a generalized synchronization of eackamples and when the input is high, the IC holds the applied
with the first system. Their new simple test replaces involvedsoltage. Our mode[Egs. (23) and (24)] assumes that an
computation[3,24]. For experimental measurement of gen-instantaneous sample is taken. This is approximated using a
eralized synchronization through the auxiliary systems apene-shot integrated circuit IC3. The pulse generated by this

proach, we propose using the distribution exponent. circuit goes low for 0.87us, which is only 0.1% of a typical
oscillation period, and results in a sample within 0.1% of the
ACKNOWLEDGMENTS true value. IC4, which triggers a pulse in the one shot, is fed

by the square wave output of the VAEC1), and sharpens
We would like to acknowledge Edgar Knobloch, who the leading edge of this signal eliminating VCO noise which
helped give us the insight about how to analyze the randomlynight make that transition ambiguous.
fed DPLL system. This work was partially funded by NSF  Operation of the circuit at a particular point in the

Grant No. Phy 9505621. foib¢for b, parameter space requires careful adjustment of all
the potentiometersR1—-P8) in the diagram. To tune the
APPENDIX A circuit before operation we remove all dashed input connec-

tions, so that known voltages can be applied to the VCO, and
Figure 17 shows the full circuit diagram of the experi- voltage to frequency characteristics can be accurately mea-
ment. Integrated circuitdC’s) 1f-4f make up the feeding sured. By measuring the voltage to frequency characteristics
DPLL and IC’s Ir-4r make up the receiving DPLL's. The of the two VFC320's and adjusting the potentiometers
VCO'’s (IC1) produce triangular waves. The voltage fre- (P5r—P8r), we match those characteristics to those shown
guency characteristics of IC’srlare ultralinear, but the tri- in Fig. 6(@. More importantly, we adjust the voltage fre-
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guency characteristics of the VFO320'’s to be nearly identical APPENDIX C

to each other as shown in Fig(b}. Next the VCO (IC1) is
reconnected to the SH (I€2. We measure the range of the
input signalg.(t) to IC2r, which comes from ICL. The
lowest voltage in this range typically 2.4 V should produce
frequency offy, —b,, while the highest voltage, typically
9.6 V, should produce a frequency faf, + b, . By adjusting
the potentiometer®1r1—P4rl and applying the known
upper and lower voltages in the input range, we tune the firs

“ ' 1] 1 1 .
receiving” DPLL to the parameter$;, andb;. By adjust- sure variable, and the change from that average0),

ing P1r2—P4r2 we assure that the wo ar_“p"ﬁefs differ which is a normal random variable with mean 0 and variance
from each other by much less than one part in 1000 and th%

f3,~f3, andbl~b?. Once all of the dashed wires are recon-
nected, the circuit operates at the desired point in parameter F(0)="fq+AF(0). (C1)
space.
To make measurements of the synchronization behavioger 4 length of timeAt
of this circuit we use a data acquisition board made by Na- ’

At one sampling instant of the receiving DPLL, we as-
sume the phasé(0) of the feeding signal to be a sure vari-
able with fixed value, and the frequency of the sighéd) to

%e a random variable with the Ornstein-Uhlenbeck steady
state distribution. In steady state the frequeR¢p) of the
feeding signal at the time of the sample is a normally distrib-

ted random variable with meafy; and varianceA. We

ecompose this into the average frequefigy, which is a

tional Instruments. An on-board 10-MHz clock runs two 1 1

counters, each of which has an input from OUI and At=t —ty= = ,
OUT r2. When these inputs go from low to high, the com- for(1+be¢n)  for(1+brgi(6)) c2
puter reads the value of the counters, which measure to )

within 0.1 us when the two DPLL loops sampled. Labview

software is then used to process this data. a new sample of the DPLL is taken at a phase given by the

random variable® (At), which depends on both the phase
0(0) and the frequenci (0) of the initial sample. The av-

APPENDIX B erage value o is

We show that the maximum value for the distribution
exponent between two systems is unity by considering two (0(A1)=(O(A))oat)F(0) - (€3
systems on the circlp—%,3) which are completely unsyn- o .
chronized. We model these two systems with random variwhere the expectation is over the phase variable and the ran-
ables. The statew andx of the two systemsv are repre- dom frequency variable=(0) and is a function of the
sented by the random variabMsandX, respectively, which Sampled phasé(0). To determine this expectation, we con-
are uniformly distributed betwedn- %,%). We assume that dition the inner expectation oH(O) by assuming that we
the two random variable/ and X are independent of one Kknow the value of the random variahe~(0) to beAf(0),

another. The linear difference between the two random @ fixed value:

variables is the random variabi®
{(O(AD))oat)r0)=(O(A)|AF(0)=AT(0))oat))F(0) -
R=|X-W], (B1) (C4

defined on the circlé—3,%), such that any differences that We decompose the random phad€At) into its previous
fall outside [—%,3) are mapped back into the interval value#0), the constant increasef,(At) due to the average
through identification of the integer multiples. The largestfrequency which is not random, and the random deviation of
separatiorr that can occur between andx is 3. The den- phaseA®(At):

sity function ofr is uniformly distributed betweef0,3],

O(At)=6(0)+Afy(At)+AO(AL). (CH
fr(r)=2, O<r<i. (B2) . _
The second term on the right side results from the average
Defining a new random variabl@, frequencyfy; and is the fixed function
Z=In(R), (B3) AGy(At)=fAt. (Co)
and transforming EqB2), we obtain We substitute Eq(C6) into Eq. (C5), and take the condi-
tional expectation
fo(z)=2€% z=<In(3). (B4)

(O(AD|AF(0)=Af(0))6(a
=(6(0)|AF(0)=Af(0))+(forAt|AF(0)=Af(0))
In(f,(z))=In(2)+z, z=<In(3). (B5) +(A®(At)|AF(O)=Af(O)>. (C7)

Taking the logarithm of Eq(B4) gives

The slope of Ii6f ;(z)) vs z, which is the distribution expo- The first two terms on the right hand side are sure variables,
nent, is unity. so we can drop those expectations. The third term on the
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right hand side is the integral of the random procag«t).
This average for the Ornstein-Uhlenbeck proced2#

(AO(A)|AF(0)=AF(0))osn=AF(0)7(1—e 27,
(C8)

Equation(C7) simplifies to
(O(AD)|AF(0)=Af(0))e(an
=0(0)+ foAt+Af(0)r(1—e AY7)
(C9

We now take the expectation ov&F(0), which is the same
as taking the expectation ovel(0),

(O(AL)|AF(0)=Af(0))o(ar))ar(0)
=0+ forAt+(AF(0))ar(o)7(1—e™4Y7),
(C10

Because\F(0) is a normal random variable with mean zero,

(AF(0))aF(0)=0. (C1y
Hence Eq(C10 simplifies to
(O(At))= 0+ fyAt. (C12

To obtain the variance
(O(A1)%) =(O(AD)*=(O(AD) )6 (a0)r(0)
~(O(At) o)) (C13)
note that from Eq(C12
(O(AL))2=(6+foAL)2 (C14

We take the conditional expectation of the left term,

(O(A1)?)=((O(A1)?|AF(0)= Af(0)>(~)(At)>AF(O)(-C1

The inner expectation is related to the variance through
(O(AH)?|AF(0)=Af(0))g(ar)
=(®(AD|AF(0)=AF(0))3 4y,
+vaf®(At)|AF(0)=Af(0)}e(ar)-
(C16

The first term on the right side is evaluated using &2p),

(O(AD|AF(0)=AF(0))3 4y,
=(0+foAt)%+2( 0+ fos At AF(0)7(1—e AY7)
+[Af(0)r(1—e 2V7)]2 (C17)

The second term of EqC16) is a standard characteristic of
the Ornstein-Uhlenbeck proces&3],

P. KHOURY, M. A. LIEBERMAN, AND A. J. LICHTENBERG

var{®(A)|AF(0)= AF(0)} o0
—2A7 At—ZT(l—e’A”T)—i-%(1—e’2(m”)) . (C18

Substituting Eqs(C17) and(C18) into Eq.(C16), and taking
the expectation oAF(0), gives

(O (AD)?|AF(0)=Af(0))e(at))aF(0)
= (04 o A2+ 2( 0+ ForAL)
X (AF(0))aroyr(1—€~*7)
+(AF(0)%)ap 0T (1— e 87)2

+2A7 At—27(1—-e 27

+ 2 (1—e 280 (C19

The steady state implies EGC11), and also implies that
(AF(0)®) zp(0)=A. (C20
Substituting Eqs(C11) and(C20 into Eq.(C19 gives

{O(A)?|AF(0)=Af(0))o(at)aF(0)
=(0+forAt)2+ AT (1—e 47)2

+2A7 At—27(1—e 4Y7)

pe
+— (1_e—2At/T)

5 , (C2D)

We substitute EqgC14) and(C2)) into Eq.(C13), and sim-
plify, to determine the variance

(O(A)?)—(O(AL))2=2A7(At— 7+ 7€ 4Y7),
(C22

Equations(C12 and (C22 are the mean and variance of a
Gaussian random variable, and together they specify the
probability distribution of phase of a new sample of the ran-
dom frequency input signal.

APPENDIX D

To determine the coefficientsmore easily, we decom-
pose the stochastic map of E439) and(40) into two steps:
stochastic and nonstochastic. Considerritte sample to be
the sure variabl®,,. The first step of the map is nonstochas-
tic, and maps the sure variabl, to a new sure variable
0,+1 as dictated by Eq.39). This is a simple transformation.
The second, stochastic, step spreads the sure varighle
into the random variabl® ., ;. Because the new random
variable® . ; is the integral of a Gaussian random process,
it is normally distributed with mea,,,; and variancev,
which are functions of) through Eqs(39) and(40). We can
view 0., , as arising from the addition of the sure variable
On+1, and the random variablg, which is normally distrib-
uted with the same varianeeas®,,, ; but with mean 0. The
nth sample is not sure, but instead is the random vari@hle
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which is distributed with density functioﬁ@n(a). and in turn the Fourier coefficients of the density function
We express g (6) in terms of its Fourier series depend ornv:
a = —
fo (6)= ?O+ > a,cog2mné)+ >, b,sin(27né). Em(v) zf_llzf:(v,g)cos(Zwmg)dg ©9)
" n=1 n=1
(D) and
The coefficientsa, andb,, are determined through 12
" €n(v)=2 f | f=@@sin2amedé. (D10
an=2f f@n( #)cog2mnH)de (D2)
e If we use Eq(D7) in Egs.(D9) and(D10), the integrals can
and be evaluated by exchanging the order of integration and sum-
mation:
12 03
e tnv)=2 X ( f e ¢2cog2mmé)dé
i=— \ J[i—(12] 27

The distribution of this random variable after mapping by the (D11)

nonstochastic step of the map is defined td Qe( 0') which

. . . and
terms of a Fourier series, is

o [+@2) 1
2 + 3 ajcog2mne )+2 bysin(2mn6’). Em(v)=2 2 (f[ e 7 sm(Zwmé)df)-

0
2 i—(12]1 27mv
(D4) (D12

fo,(0)=

Likewise, we define the distribution after both the nonsto-We obtain the results
chastic and stochastic map stepsf@sﬂ(ﬂ”), and express it

in terms of the Fourier series £(v)= ZJ e - ’2“005{277m§)d§ 2e*2’7 m2y
VA - (D13)
fo o 0" = 70+ > apcog2mnd”)+ > brsin(2wné”).
n n=1 n=1
(D5) and

The last Fourier series required is that for the normally dis- 12

tributed random variable used in the stochastic step of the §m ()= Zf \/_ et sin(2mmé)d¢="0.

noisy map=. While the domains of the density functiofis (D14)
are the circle, the domain of the Gaussian density function

defining the stochastic step of the map is the real line. W&he random variabl®” is the sum of two random variables
map numbers from the real line to the circle by identifying ¢’ and Z. The density function of the sum of two random
all numbers separated by integers. This identification transvariables is the convolution of the individual density func-

forms tions
)2 " , 1/2 ,
fz(v.&")= e &, (D6) f@m(a’):f f=(v,0"—0")fg, (6)d6’. (D15)
27 -1/2 n
defined over the real line into We use the expression
o0 1/2
N2 II: 4 /! /" /!
fE(U’g):i 2 > e (E+)%2 (D7) an, zﬁyzf@n*lw )cog2mno")de", (D16)
=—x U

defined over the circle. Because this random variable defor @, together with Eq(D15) to yield
pends orv, its density function depends an " 1
a”=2f f f=(v,0"—0")f.,(0")de’
§a( " —1/2{ —12 =(v ) n( )
+ 2 £ (v)cog2mmé)

fz )=
=08 Xcog2mng")de". (D17)

n b (1)sin(27mé), D8 Because all functions within both integrals are periodic, we
E En(v)sin(2rme) (b8) interchange the order of the integrals
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1/2 1/2
a;;:zf {f f=(v,0"— 0’)cos{2wn6”)d0”]
—12| J-1/2
xfé),(e’)de'. (D18

We examine just the term in brackets substituting &28)
for f=(v,&):

1/2
f fE(U,g//_
-1/2

[

12 2

0')cog2mno")do”

cog2mne")do”

1/2

<[ ( S, &(v)cosamm(o o )))

Xcog2m7ng")de”

+f1/2 ( > §bm(v)sin(27rm(6”—6’)))
—1/2\ m=1

Xcog2mwng")de". (D19

From Eq.(D14), the third term on the right hand side is zero:

1/2
f f=(v,0"—6')cog2mne")do"
/

_ fllz &)

cog2mne")dey”
—12 2

[ >

+f (2 £ (v)cog2mm(6"—6'))
—1/2\ m=1

X cog2mne@")de’". (D20)

We interchange the order of integration and summation

12
f fE(v,H”—

—1/2

0’)cog2mng")de"

£(v) (12
=20 cog2mwn@")de"
—-1/2

+> g;(v)fllz cod2mm(9"—6"))
m=1 —1/2

Xcog2mne")de". (D21)
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The second integral is

1/2
J cog2m7m(0"— 6'))cog2mnH")do”

-12

cog2mnd’)
=Sum — (D24)

Taking Egs.(D23) and (D24), substituting into Eq(D21),
and carrying out the sums, gives

1/2
J f=(v,0"— 6')cog2mn ") d o
—-1/2

&(v)
2 " D25
B a cog2wné’) (b25)
&(v) ————, n#0.
2
But
v cog2mwné’
50; . 3y # n=0, (D26
so we simplify Eq.(D25) to
1/2 cog2mné’)
f fz(v,0"—6')cog2mne")do" = gn(u)—.
—1/2
(D27)

Substituting Eq(D27) into Eq. (D18) gives
1/2 ,
=f &(v)cog2mne’)f . (6')de’. (D29
—-1/2 n

We transform from the variabl@’ to the variablef using the
nonstochastic maf89), 8’ =(0O(4)).

The variable substitution works smoothly because the
probability density and the differentials transform from one
variable to another g22]

fér;(e')da’ =fo (6)d0. (D29)
Carrying out the substitution, we have

ar— f(() 1/2)~t & (v)cos{27m<®(9)>]f0 (6)de.
(O(-1/2))~
(D30)

Because the integrand, the functi@®(6)), the variabled”,

Because of the orthogonality of sinusoidal integrals, Eqand the variabled are all on the circle and periodic with
(D21) can be greatly simplified. We introduce the Kroe- perlod 1, we shift the limits of EqD30) to run from — 3 to

necker delta

1, n=m
onm=|0, n#m. 022
The first integral on the right hand side is
1/2
f cog2mng")de" =4, (D23
-1/2

:J_ljzfﬁ(v)COS(ZWM@(0)>)f@i(0)d0. (D31)

To determine the relation between the fourier coefficients of
the distribution of one sample and the next, we substitute Eq.
(D1) into Eq.(D31) changing the variable of summation in
Eq.(D1) tom



1/2

E(v)cod27n(B(0)))
—-1/2

"__
an—

a o0
x| 2+ a,cog27mé)
m=1

2

+ 21 bmsin(ZTrma))da. (D32)

We interchange the order of the integration and summation,

"__
a,=

[ e 2O

de)ao

* 1/2
+ > ( J £3(v)cog 2mn(©(6))]
m=1 —1/2

Xcog2mme)deo|a

* 12
+ ( J £3(v)cog2m(0(6))]
m=1 —-1/2

><sin(27-rm¢9)d¢9)bm (D33

We write all of the dependencies explicitly, substituting Eq.

(D13) for the coefficientsta(v):

fl/Z Y cos(27-rn<®(0)>)
1/2 2

n

a,=

dé; |ag

1/2
+> (f 2e‘2“2m2”(0i>cos(21-rn<®(Hi)))
m=1 —-1/2

Xcog2mma)de,; |a

1/2
+> (f 26270 cog27n(O(6;)))
m=1 -1/2

><sin(27-rm0)d0i)bm. (D34)

Through similar calculations as Eqd16)—(D34) we find
an expression foby,
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sin27n{O(6;)))
2

b;;: dt9| dp

1/2
j Ze—27r2mzv(0i)
—-1/2

* 1/2
> (]
m=1 —-1/2

X cog2mma)dé, ) am

) 2627 (0)sin2 (O (6))))

5>

m=1

12 5 o
(J' /2e*2” M (G)sin27n(O(6))))
1/2

><sin(27rm6)d0i)bm. (D35)

Equations(D34) and (D35) relate the fourier coefficients of
the random variable density function at the time of a sample
to the Fourier coefficients of the density function at the time
of the next sample. We define the coefficients

12 cog27n(O(0)))

£v) ——5———do, (D30
—12

aa_
tnO_

f E3(v)cog2mn(O(h)))cog27me)d ¥,
(D37)

£30 = J fn v)co2n(O()))sin(2mme)dé,
(D39)

de,

in2
(ha_ ﬁ/z - sin( wn2(®(t9)>) (039

tha = J gn v)sin(27n(O(6)))cog2mmo)ds,
(D40)

and

tPP = f £(v)si27n(@(6))]sin(27me)dé,
(D41)

and rewrite Eqs(D34) and (D35) as Eqs.(49) and(50).
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