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Experimental measurement of the degree of chaotic synchronization
using a distribution exponent

P. Khoury, M. A. Lieberman, and A. J. Lichtenberg
Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of Califor

Berkeley, California 94720
~Received 22 December 1997!

We investigate the use of a distribution exponent for determining the degree of chaotic synchronization of
two nearly identical systems. This exponent can be easily measured experimentally; its value corresponds
closely to the probability of separation of the two systems, and it is closely connected to the conditional
Lyapunov exponent near the threshold of synchronization. The determination of the degree of synchronization
by a distribution exponent is illustrated in both experimental and simulated systems of three digital phase
locked loops~DPLL’s!; one chaotic ‘‘feeding’’ DPLL is an input to two ‘‘receiving’’ DPLL’s. We use the
relationship between the conditional Lyapunov exponent and the distribution exponent to evaluate a model of
our experimental system in which we approximate the feeding chaotic DPLL system with random noise. We
determine the degree of synchronization of the two receiving DPLL’s by calculating the conditional Lyapunov
exponent. The close relationship between the conditional Lyapunov exponent and distribution exponent at the
threshold of synchronization allows us to compare our experimental measurements of synchronization, which
use the distribution exponent, with the conditional Lyapunov exponents calculated from analysis.
@S1063-651X~98!14705-0#

PACS number~s!: 05.45.1b, 02.50.Ey
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I. INTRODUCTION

A defining characteristic of a chaotic system is that it
sensitive to initial conditions. Two identical chaotic system
that start with different initial conditions will never synchro
nize. Pecora and Carroll conjectured that a stable subsy
of a chaotic system can synchronize if all condition
Lyapunov exponents of the subsystem are negative, and
demonstrated this numerically for the Lorenz and Ros
systems@1,2#. The results of the simulations were evaluat
in two different ways, through the conditional Lyapunov e
ponents of the subsystem and through examination of
time evolution of the differences between the chaotic sys
and the subsystem. Pecora and Carroll also demonstr
chaotic synchronization in an experimental system@1,2#.
They evaluated the synchronization behavior of the exp
mental system through examination of the time evolution
phase space differences. Since the differences betwee
chaotic system and the subsystem decreased to an am
smaller than the scale of the attractor, they concluded tha
experimental system synchronized. Further evidence of s
chronization was provided by a plot of one variable in t
chaotic system versus the similar variable of the subsyst
Two synchronized systems, where one variable is identica
the other, produce a straight line.

Since these two papers, many researchers have fu
explored and generalized the concept of chaotic synchr
zation and proposed uses for this phenomenon@3–15#.
Pecora and Carroll’s initial model of chaotic synchronizati
was broadened by Rulkovet al. @3# to encompass chaoti
systems and subsystems which might not be identical. T
call this ‘‘generalized synchronization,’’ and showed how
detect it even when two signals exhibit large differenc
They also developed a new way of detecting generali
571063-651X/98/57~5!/5448~19!/$15.00
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synchronization using auxiliary systems@4#. Kim @5# inves-
tigated the link between on-off intermittency and chao
synchronization. Carroll, Heagy, and Pecora studied how
chaotic signal transmitted between system and subsys
can be transformed while still maintaining chaotic synch
nization @6#. Vieira, Lichtenberg, and Lieberman@10#
showed that the concept of synchronized chaos could be
tended to discrete systems. Many studies of chaotic sync
nization have focused on the potential use for secure c
munication @7–14#. These studies required evaluation
whether two systems are synchronized, which was de
mined using the original methods of Pecora and Carroll.

The most widely used method for examining synchro
zation is a plot of a one variable of the chaotic system ver
the same variable of the subsystem@4–11#. For simulations,
these plots show synchronization through straight lin
which are visually obvious and carry a clear physical me
ing. However in experiments, the correlation between t
variables is not exact, exhibiting a spread in the differen
between variables@11#. This spread arises from the physic
differences between the two subsystems being compare
from noise introduced separately into the two subsyste
Comparing such plots allows a qualitative comparison
tween synchronized and unsynchronized states, but doe
allow a quantification of the differences.

A second method for measuring synchronization is to
erage the error difference between the two signals and e
use this statistic directly or normalize by the overall sign
strength to obtain a signal-to-noise ratio@13,14#. This
method is quantitative and easy to implement. However
does not uniquely measure the degree of synchronizat
For example, two systems which are strongly synchroni
but have large system differences may have an average e
which is the same as two systems which are weakly sync
nized but have smaller system differences.
5448 © 1998 The American Physical Society
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57 5449EXPERIMENTAL MEASUREMENT OF THE DEGREE OF . . .
In addition to using a straight line synchronization plo
the authors of Ref.@6# used the conditional Lyapunov expo
nent to evaluate the degree of chaotic synchronization. If
sign of the largest conditional Lyapunov exponent is ne
tive, then the system is synchronized. Reference@6# also
used the magnitude of the largest conditional Lyapunov
ponent as an indication of the degree of synchronization.
authors determined these exponents numerically from
equations of motion. It is difficult to calculate the condition
Lyapunov exponent from experimental data@16#.

Pikovsky@17# introduced the concept of a distribution e
ponent, which is the ratio of the logarithm of probabili
versus the logarithm of separation, to evaluate synchron
tion of orbits of a simple mapping subject to noise. The s
of the exponent indicates whether or not the two systems
synchronized, and the magnitude is a measure of the de
of synchronization. We explored the use of the distribut
exponent to characterize orbit synchronization of mappi
for more general noise distributions@15#. We showed that
this method for evaluating synchronization is related to ot
methods. The mean error difference can be calculated o
the probability distribution is known. More important, th
Lyapunov exponent and the distribution exponent cha
sign together. When the distribution exponent equals zero
Lyapunov exponent also equals zero, which is the thresh
of synchronization. The distribution exponent is easier
measure than the Lyapunov exponent in an experiment,
the Lyapunov exponent is easier to determine in analyz
known equations.

Kuramoto and Nakao@18# studied a large array of identi
cal systems all driven by random forcing which vari
slowly across the array. Interested in self-similarity acro
this array, they developed equations predicting the proba
ity distribution of separation between two nearby neighb
that are similar to ours in Ref.@15#. From the distribution,
they predicted the moments of the distribution and how th
moments vary across the array. Both of these predicti
were confirmed through simulations.

In this paper we describe experimental measurement
synchronization using a system of three digital phase loc
loops ~DPLL’s!. The circuits were directly connected to
data acquisition board to make measurements of circuit
namics. Digital phase locked loop dynamics have been
tensively studied, so their dynamics is well know
@10,11,19–21#. These dynamics are well described by a ma
ping equation which allows us to perform accurate and
simulations of the DPLL systems we study. In additio
DPLL systems have been used in many applications suc
clock synchronization and random number generat
@19,21#.

In Sec. II, we review the results of previous work nece
sary for the present study. In Sec. III, we describe the
namics of an individual DPLL, and of the experimental sy
tem of a chaotic DPLL feeding two nearly identical DPLL’
In Sec. IV, we describe the experiment and how the exp
mental data was taken and processed to produce proba
plots of separation of the DPLL outputs. The values for d
tribution exponent are measured from these plots and c
pared to DPLL simulations, for which conditional Lyapuno
exponents are also measured. In Sec. V, we develop an
,
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lytical model of our experimental system which we test
comparing the threshold of synchronization measured by
distribution exponent in the experiment to the threshold
synchronization measured by the Lyapunov exponent in
model. We show how noise can be used to approxim
chaos in the model of our experimental system, and h
Fourier methods can be used to analyze the result. From
results, we calculate the Lyapunov exponent and comp
the threshold of synchronization to that found in our expe
ment. We determine the relationship between the distribu
exponent and the conditional Lyapunov exponent near
threshold of synchronization.

II. MEASURES OF SYNCHRONIZATION

Two identical mapsh with different state variablesw and
x, with the same additive noisej, but with a small difference
noised,

wn115h~wn!1jn1
dn

2
~1!

and

xn115h~xn!1jn2
dn

2
~2!

have a separationr n5wn2xn . We use a logarithmic sepa
ration scale to characterize the degree of synchronizatio

zn5 lnur nu. ~3!

By assuming small separations, but large compared tod, we
developed equations in a previous paper@15# which describe
the evolution of the small separations. The increase or
crease of the separation is related to the average statsn
5(wn1xn)/2 by

zn115zn1 lnuh8~sn!u. ~4!

The same map which describes the individual dynamics
Eqs.~1! and~2! also approximately governs the average d
namics for nearly synchronized systems,

sn115h~sn!1jn . ~5!

The instantaneous Lyapunov exponent, which describes
change in separation during one time step, is given by

Ln
15 lnuh8~sn!u. ~6!

The average of the instantaneous Lyapunov exponent ov
typical trajectory ofsn is the conditional Lyapunov exponen

l5 lim
N→`

1

N (
n50

N

Ln
1. ~7!

It is a measure of the average rate that two nearby system
phase space separate or approach. If the conditio
Lyapunov exponent is negative, the two noisy systems
average approach one another and will synchronize. If
conditional Lyapunov exponent is positive, the two noi
systems separate from each other on average and will
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5450 57P. KHOURY, M. A. LIEBERMAN, AND A. J. LICHTENBERG
synchronize. Definition~7! can be extended to a mapsn11
5h(sn ,yn), fed by a chaotic signaly, by defining

l5 lim
N→`

1

N (
n50

N

lnU ]

]s
h~sn ,yn!U, ~8!

wheresn andyn are chaotic trajectories of the entire syste
As in our previous paper we use definitions~7! and~8! to

make theoretical predictions about the synchronization
havior of two systems subject to noise or chaotic inpu
These definitions are only useful if there is complete a
accurate knowledge of the synchronization system. T
simulations of one map yield the conditional Lyapunov e
ponent and a prediction as to whether two systems will s
chronize or not. Such theoretical predictions were made
Pecora and Carroll, who also performed experiments prov
the link between the sign of the conditional Lyapunov exp
nent and synchronization@1,2#. The magnitude of the condi
tional Lyapunov exponent gives the rate of separation
approach, and therefore quantifies synchronization. Syst
with a large negative conditional Lyapunov exponent s
chronize rapidly. Similarly, a large positive condition
Lyapunov exponent indicates rapid desynchronization. Si
measuring the magnitude of the conditional Lyapunov ex
nent in a synchronizing experiment is difficult, we determi
the degree of synchronization through the distribution ex
nent ~defined below!, which is related to the Lyapunov ex
ponent@15#. We showed in Ref.@15# that an invariant distri-
bution exists forr , and that the distribution took the form o
a truncated geometric probability,

f R~r !}r s21 r s,r ,r l , ~9!

with other behavior at small separationsr s and at large sepa
rationsr l . The transformation of this distribution to a loga
rithmic measure of separation creates an invariant distr
tion which has a truncated exponential form,

f Z~z!}esz zs,z,zl . ~10!

A plot of the logarithm of probability versus the logarithm
separation has a linear region where Eq.~10! holds.

An example taken from our previous paper illustrates
behavior of Eq.~10! using a piecewise linear map

h~x!55
S 2ms13

2 D x2
ms

4
1

1

4
, x,

1

6

msx, 2
1

6
<x,

1

6

S 2ms13

2 D x1
ms

4
2

1

4
,

1

6
<x,

~11!

with additive Gaussian white noisej on the circle, so that
mappings~1! and ~2! are taken mod 1. The synchronizatio
of these maps depends on the parameterms and the variance
of the noisej. We plot the logarithm of probability versu
the logarithm of separation for maps~1! and ~2! using map-
ping ~11! in Figs. 1~a!–1~c! for different parametersms and
noise variances. Each graph has a middle region marked
straight line of slopes. Figure 1~a!, containing a positively
.
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sloped line, has a greater probability weight toward larg
separations, indicating that the two systems are unsync
nized. Figure 1~b!, with a negative slope, implies that th
maps are synchronized because the probability distributio
weighted towards smaller separations. Figure 1~c!, with a
nearly zero slope, shows two maps on the border betw
synchronization and desynchronization. We identify t
slope of the line, the distribution exponents, as a measure o
synchronization.

The three figures show deviations from geomet
~straight line! behavior, with decreases in probability towa
small and large scales. The decrease on the right beyonzl
~or r l! is produced by the finite size of the system orbi

FIG. 1. Typical probability distributions of the separation of tw
nearly identical maps. The probability and the separation are
logarithmic scales.~a! Unsynchronized.~b! Synchronized. ~c!
Threshold of synchronization.
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57 5451EXPERIMENTAL MEASUREMENT OF THE DEGREE OF . . .
Nonlinear terms modify Eqs.~4! and ~5! to keep the system
bounded, as the separation cannot exceed the system
The exponential region is bounded on the left byzs ~or r s!
due to the small noise and parameter differences betwee
two systems.

To examine the role of differences at the lower bounda
we analyze noise differences and then show that param
differences behave similarly to noise differences. These
ferences only become important when the separation
tween the two systems is sufficiently small. Consider
case of no separationr n50. Two identical states acted on b
two systems with small difference noised will separate by

r n115dn . ~12!

The separations between the pairs of systems show
Fig. 1 are never exactly zero, but, whenz,zs , the magni-
tude of the difference noised is larger than the separationr
between the two systems and Eq.~12! will hold approxi-
mately. The difference noise forces a finite separation of
two systems and the boundariesr s and zs are directly pro-
portional tod.

Differences between the two systems due to difference
parameters can also be considered as a form of differe
noise@17#. Consider two systems containing a parametea
which differs in each system by a small amount«,

wn115h~wn ,a1«!1jn ~13!

and

xn115h~xn ,a2«!1jn . ~14!

Since« is small, we can expandh arounda:

wn115h~wn ,a!1jn1
]

]a
h~wn ,a!« ~15!

and

xn115h~xn ,a!1jn2
]

]a
h~xn ,a!«. ~16!

Because the third terms in Eqs.~15! and~16! are not constan
but instead depend on the random variableswn andxn , they
act like a difference noised.

Besides deriving the form of the probability distribution
we also demonstrated in Ref.@15# that the conditional
Lyapunov exponent and the distribution exponent cha
sign together, establishing a correspondence between the
measures of synchronization. All the calculations were
maps with additive noise. We also showed synchroniza
plots for two nearly identical maps fed with chaos. Th
exhibited the same general bounded exponential probab
distribution behavior, and we hypothesized that the distri
tion exponent could also be used to measure the synch
zation behavior of chaotically fed systems. We examine
hypothesis here, by obtaining probability plots from a ch
otic experimental system. These experimental probab
plots exhibit the same bounded exponential distribution
havior.
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III. DIGITAL PHASE LOCKED LOOPS

We use a system of three first order DPLL’s connected
shown in Fig. 2 to study synchronization experimental
Each DPLL contains two components; a voltage control
oscillator~VCO! and a sample and hold~SH! amplifier. The
first DPLL is fed by a sine wave, and the second two are
by the oscillating output of the first DPLL. Letg(t) represent
the incoming signal. The SH component takes a sampleCn
of the incoming signal at timetn :

cn5g~ tn!. ~17!

The value of this sample controls the behavior of the VC
The VCO oscillates at a frequency proportional to t
sampled voltage,

f 5 f 0~11bc!. ~18!

This oscillation is often modeled to be sinusoidal, but in
experimental system it is more likely to be either a square
triangular wave. A new sample is taken by the SH amplifi
after the VCO completes one full oscillation. The time b
tween samples is 1/f , and the new sample time is

tn115tn1
1

f 0„11bg~ tn!…
, ~19!

which describes the dynamics of the DPLL. We consider
case where the incoming signalg(t) is a sinusoid with time
normalized so that the oscillation frequency is unity. No
the dynamics of the DPLL is fully described by the mappi
equation

tn115tn1
1

f 0„11b sin~2ptn!…
. ~20!

Becauseg(t) is periodic with unit period, the timestn sepa-
rated by integers are equivalent states, which we transf
into the phase variablefn5tn mod 1, giving

fn115fn1
1

f 0„11b sin~2pfn!…
. ~21!

A study of Bernstein@21# explored the dynamics of this sys
tem, the boundary of invertibility, and the regions of regu
and chaotic behavior. Figure 3 shows the regions of reg
and chaotic behavior by plotting the Lyapunov expone
obtained from simulations of Eq.~21! over the (f 0 ,b) pa-
rameter plane. We operate our first~‘‘feeding’’ ! DPLL at a
chaotic point in parameter space,f 0 f50.714 andbf50.28.

FIG. 2. Experimental system of DPLL’s.
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In Fig. 4~a!, we mark sampling times~vertical lines! on the
sinusoidal input to the DPLL, which occur at the maximu
of the VCO output. The VCO outputgc(t) is a triangular
wave as shown in Fig. 4~b!. Figure 4~c! shows how the fre-
quency ofgc(t) changes in a discrete way to a new fr

FIG. 3. Parameter space stability diagram of a first order DP
with sinusoidal input.~a! Negative Lyapunov exponents.~b! Posi-
tive Lyapunov exponents. The darker the dot, the larger the ma
tude of the Lyapunov exponent.
quency at the beginning of each oscillation period. The
variant distribution of these frequencies is shown in Fig.
This distribution is fractal because of the chaotic nature
the system. From the frequency ofgc(t), we can determine
the phase of the signal:

u~ t !5S E
0

t

f ~ t8!dt81u~0! Dmod 1. ~22!

Because the frequency stays fixed for an entire oscillation
discontinuities in phase only occur at one particular ph
value which we define to be zero, when the DPLL take
sample. The two ‘‘receiving’’ DPLL’s are fed by the chaot

L

i-

FIG. 4. The typical dynamics of a first order DPLL with param
etersf 050.714 andb50.28. ~a! Sinusoidal input.~b! Typical out-
put of the DPLL. ~c! Frequency of the DPLL output. The thre
values labeled on the vertical axis aref 0(12bmax), f 0 , and f 0(1
1bmax), respectively. Vertical lines show the sampling times,
which the DPLL changes to a new frequency.
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57 5453EXPERIMENTAL MEASUREMENT OF THE DEGREE OF . . .
signal gc(t). These DPLL’s have parameters (f 0r
1 ,br

1) and
( f 0r

2 ,br
2). In order to study synchronization, we tune the tw

loops so thatf 0r
1 ' f 0r

2 ' f 0r and br
1'br

2'br . As noted in
Eqs.~15! and~16!, small parameter differences are model
through the use of additive difference noise. Each receiv
DPLL is described by Eq.~19!, with gc(t) as input for both
and with difference noised/2 added to one equation an
subtracted from the other:

tn11
1 5tn

11
1

f 0r„11brgc~ tn
1!…

1
dn

2
, ~23!

tn11
2 5tn

21
1

f 0r„11brgc~ tn
2!…

2
dn

2
. ~24!

IV. EXPERIMENT

Appendix A contains a description of our experimen
realization of Eqs.~23! and~24!. In the experimental system
the circuits making up the two DPLL’s are not exactly ide
tical. One limiting factor is that the VCO’s contained in ea
circuit have slight nonlinearities which differ from eac
other. It is also difficult to tune the parametersf 0r andbr to
be identical in the two circuits. A typical plot of the voltag
versus frequency characteristics of one DPLL is shown
Fig. 6~a!, and the typical error between two of them is show
in Fig. 6~b!. The error is measured as the difference betw
the frequencies produced by each VCO divided by the a
age frequency of the two VCO’s. Also marked on the plot
the center frequencyf 0 and the range of frequencies used
our experiment. We were able to make the two DPLL’s sim
lar to one part in one thousand. We model the differen
between the two systems in our simulations with a differe
noise d that is white and uniformly distributed betwee
20.001 and10.001.

We determine differences between the dynamics of
two receiving loops experimentally by measuring the sa
pling timestn

1 and tn
2. We define the difference between th

two loops to be the time difference between one sample
its nearest neighbor in the other loop’s sample space:

r ~ tn
1!5minm~ utn

12tm
2 u! ~25!

and

FIG. 5. Probability density of the frequency of a DPLL outpu
g

l

n

n
r-

-
s
e

e
-

nd

r ~ tn
2!5minm~ utn

22tm
1 u!. ~26!

The time differences are measured in increments of a
MHz clock used by our data acquisition board. The high
frequency of our receiving loops is 4800 Hz, making o
measurement resolution at worst 531024.

We take 10 000 time samples for each receiving loop, a
convert this data into a probability distribution. At eve
sample time we determine the difference between the
loops and order this list of differences from smallest to la
est. LetN<(r ) represent the number of separations in this
less than or equal to the separationr . Let Nt be the total
number of separations in the list. IfP(d) represents the
probability of some event, andR is the random variable rep
resenting the separation, then

FR~r ![P~R<r !5
N<~r !

Nt
~27!

represents the probability that any particular sample of
loop will be within r clock ticks of a sample by the othe
loop.

Through the equality in Eq.~27!, we generate an approxi
mate cumulative distribution functionFR(r ) @22#. This func-
tion is discrete in both separation and probability, increas
in multiples of 1/Nt at integer values which represent mu
tiples of the 10-MHz clock. Figure 7 shows a representat
cumulative distribution function. We take the logarithm

FIG. 6. Plot ~a!: the frequency voltage characteristic for th
VFC320. Plot~b!: the frequency error as a function of frequency
measured between two VFC320’s tuned to have nearly iden
frequency voltage characteristics. The region between the leftm
and rightmost vertical lines shows the greatest frequency rang
‘‘receiving’’ DPLL operation.
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the abscissa of this function to generate a cumulative di
bution of the logarithm of the separation probability. If

Z5 ln~R!, ~28!

then

FZ~z!5P~Z<z!5P„ln~R!<z…5P~R<ez!5FR~ez!.
~29!

The derivative of the cumulative distribution function yield
the probability density function@22#

f Z~z!5
d

dz
FZ~z!, ~30!

where

f Z~z!dz5P~z,Z<z1dz! ~31!

is the function used in Eq.~10! to describe the distribution
exponent. Since we have a discrete approximation to the
mulative distribution functionFZ(z), we take the derivative
of this function numerically. We find the derivative at a di
crete point on the cumulative distribution function by taki
that point and its two adjacent points, constructing an
proximate polynomial between these points, and taking
derivative of the polynomial at the center point. We appro
mate the derivative at every data point along the cumula
distribution function. To see more clearly the exponen
region, we take the logarithm of the numerical derivativ
which estimate the density functionf Z(z). Figure 8 shows
the logarithm of the transformation by Eqs.~29! and~30! of
the data shown in Fig. 7. Figure 8 is noisy because of
relatively small size of our data set. To smooth it, we swe
a window of width 0.5~in z! across the figure computing th
running average of all values which lie within the window
Typical results of this averaging is shown in Fig. 9.

The logarithmic scale forf in Fig. 9 makes the bounde
exponential behavior in the experimental probability dis
bution stand out as a linear region in the plot. Similar to F
1, this linear region gives an application of the analysis
our previous paper@15# to an experimental system. We us
the slope of the linear region, which is the distribution exp
nent, as a measure of the degree of synchronization.
results shown in Fig. 9 describe an experimental system
the threshold between synchronization and desynchron
tion. This figure is obtained strictly from experimental da

FIG. 7. Cumulative distributionFR(r ) of separation times mea
sured by 10-MHz clock ticks.
i-
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The measurements and the transformation of the experim
tal data are more straightforward than estimating
Lyapunov exponent from experimental data@16#.

The experimental figure is also analogous to Fig. 1 at
boundaries of the exponential region. The probability dens
decreases rapidly as separations increase to near the sy
size. The probability density also decreases rapidly as s
rations become smaller than the magnitude of the effec
difference noise. Note that the magnitude of the effect
difference noise in the experimental system is larger th
that in the simulated mapping system, and therefore the
ponential region is smaller in Fig. 9 than in Fig. 1.

We have determined the synchronization behavior a
carried out quantitative synchronization surveys in the
rameter space of our two receiving DPLL’s. We expect t
synchronization behavior of the receiving DPLL’s to chan
as the parametersf 0r andbr are varied. We use the distribu
tion exponent to measure the degree of synchronizatio
many points in parameter space, and make a contour plo
the experimental distribution exponent valuess in Fig. 10.
The bold line on this plot is the threshold of synchronizati
where the distribution exponents equals zero. The region to
the upper left of this bold line is synchronized and the reg
to the lower right is unsynchronized, with the contours se
rated by values ofs50.25. The largest distribution expone
present in Fig. 10 is unity. This limit, as shown in Append

FIG. 8. Logarithm of the approximate derivative of the cumu
tive distributionFZ(z).

FIG. 9. Running average of the distribution shown in Fig. 8, a
an the approximate density functionf Z(z).
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B, results from our experimental configuration using two r
ceiving loops.

For comparison we plot, in Fig. 11, the distribution expo
nents as measured through simulations of Eqs.~23! and~24!.
For the same mapping equations, we can also compute
conditional Lyapunov exponent which is, given in Fig. 12
Since the two measures of synchronization change sign

FIG. 10. Contour plot of experimental measurements of the d
tribution exponent in thef 0rbr parameter plane. The bold contou
represents the threshold of synchronizations50. Toward the upper
left of the plot, the contour lines represent decreasing values of
distribution exponent and are separated by increments of 0.25.
ward the lower right, the contour lines increase in increments
0.25.

FIG. 11. Contour plot of distribution exponent determined from
simulations of the experimental system. The contours change
increments of 0.25, with the bold contour indicatings50.
-

-

he
.
o-

gether, those measures should match at the threshold of syn
chronizationl5s50, which can be seen by comparing the
bold lines indicatings50 and l50 in Figs. 11 and 12.
These curves are qualitatively similar to the experimental
curve ofs50 in Fig. 10, with some relatively small differ-
ences. We can therefore determine synchronization behavio
directly from experimental data independent of model equa-
tions. In addition, at the threshold of synchronization, mea-
surements of synchronization using the distribution exponent
can be compared to determinations of synchronization from
model equations using the conditional Lyapunov exponent.

V. ANALYSIS

We develop a model of our DPLL system using a random
feeding signal in place of the chaotic one. In our analysis we
calculate the conditional Lyapunov exponent to determine
the synchronization behavior of our model, because it is
more straightforward than a calculation of the distribution
exponent. Despite predicting synchronization behavior
through the conditional Lyapunov exponent and measuring
synchronization behavior through the distribution exponent,
we can compare prediction with experiment near the thresh-
old of synchronization, where they give similar results.

To analyze the synchronization behavior of DPLL’s, we
model the frequency of the incoming signalF(t) as a ran-
dom Ornstein-Uhlenbeck process@23#. Using this model the
frequency of the signal being received by the DPLL’s will
always be Gaussian@22#. It is also time invariant, so a con-
stant mean and an autocovariance functionR(t) will com-
pletely characterize it. The meanf 0 f of the frequency is cho-
sen to be the same as that of the chaotic feeding signal. In
our experimental and simulated systems, the signal fed into
the two receiving DPLL’s was produced by a sinusoidally
driven DPLL with parametersf 0 f50.714 andbf50.28. The

-

he
o-
f

in

FIG. 12. Contour plot of the conditional Lyapunov exponent
determined from computer simulations of the experimental system.
The contours change in increments of 0.25, with the bold contour
indicatingl50.
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frequency distribution of this chaotic signal, shown in Fig. 5
has a mean off 0 f50.687.

The autocovariance function depends on the separation
time between two samples, and indicates the covariance b
tween two samples. For the Ornstein-Uhlenbeck process t
autocovariance function decays exponentially, so that th
frequency between two samples is strongly correlated if th
samples are taken close together in time, and weakly corr
lated if the samples are taken far apart in time. Two param
eters are needed to uniquely specify this exponential curv
the varianceA and correlation timet:

R~ t !5Ae2t/t. ~32!

We setA50.0193, which is the variance of the distribution
shown in Fig. 5. The autocovariance function of the chaoti
signal we are approximating is shown in Fig. 13; we deter
mine t by fitting it with an exponential to determine the
mean square error best fit correlation timet50.870. The
exponential associated with this correlation time is als
shown in Fig. 13. By integrating the random frequency vari
ableF over time,

Q~ t !5S E
0

t

F~ t8!dt81Q~0! Dmod 1, ~33!

we determine the random variable representing the phase
the feeding signal. The value of the random signal is relate
to the phase of the random signal through the shape of t
‘‘feeding’’ wave form gf(u). In our model

gf~u!5T~u![ H124~u mod 1!

314~u mod 1!

0<u mod 1,0.5
0.5<u mod 1,1.

~34!

The map that evolves the receiving DPLL from a phas
sampled on the random input signal to a new phase on t
random input signal is a function of the nonrandom~or
‘‘sure’’ ! variableu~0!. Because the input signal is random,
the map returns the random variableQ. From Eq.~33!, Q is
the integral of the Ornstein-Uhlenbeck process over the tim
Dt between one sample and the next,

FIG. 13. Autocorrelation plotR(t) of the frequency of the out-
put of the ‘‘feeding’’ DPLL ~dark curve!. The exponential curve
~light line! is the best fit toR(t) in the least squares sense as the
time constantt is varied.
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Q5DQ1u~0!5E
0

Dt

F~ t8!dt81u~0!. ~35!

The integral of this process is a Gaussian random varia
We determine the mean and variance of this variable a
function of Dt in Appendix C by using the standard chara
teristics of the integral of the Ornstein-Uhlenbeck proce
@23#. These characteristics are a function off 0 f , A, t, and
Dt, and the frequencyf (0) at the instant of the sample. W
take the expectation of the mean and variance over the
dom frequency variableF(0), sothatQ does not depend on
f (0), anddetermine

^Q~Dt !&5u1 f 0 fDt, ~36!

and

^Q~Dt !2&2^Q~Dt !&252At~Dt2t1te2Dt/t!. ~37!

From Eq. ~19!, the relationship betweenDt and u in the
receiving DPLL is

Dt5tn112tn5
1

f 0r~11brcn!
5

1

f 0r„11brgf~u!…
.

~38!

We substitute Eq.~38! into Eq.~36! to determine the mean o
the new phase in terms of the previous sample

^Q~u!&5u1
f 0 f

f 0r„11brgf~u!…
. ~39!

The variancev of the new phase is found similarly by sub
stituting Eq.~38! into Eq. ~37!,

v~u!52AtS 1

f 0r„11brgf~u!…
2t1te1/2 f 0r „11brgf ~u!…/tD .

~40!

Equations~39! and ~40! completely describe the stochast
map that models our system. Consider the random varia
Qn with probability density functionf Qn

(u) mapped by the
stochastic map@Eqs.~39! and~40!# to a new random variable
Qn11 with probability density functionf Qn11

9 (u9), where

the double-primed variables are defined below and in App
dix D. We seek an invariant distribution

f Qn
~u!5 f Qn11

9 ~u9!. ~41!

The random variablesQn and Qn11 exist on the circle
@2 1

2 , 1
2 ), and their density functions have domain@2 1

2 , 1
2 ).

The distributions forQn and Qn11 in this circular domain
can be expressed in terms of Fourier coefficientsan andbn ,
andan9 andbn9 :

f Qn
~u!5

a0

2
1 (

n51

`

ancos~2pnu!1 (
n51

`

bnsin~2pnu!,

~42!
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f Qn11
9 ~u9!5

a09

2
1 (

n51

`

an9cos~2pnu9!1 (
n51

`

bn9sin~2pnu9!.

~43!

If

an5an9 ~44!

and

bn5bn9 , ~45!

then Eq.~41! will hold, and the invariant distribution will
have Fourier coefficients given by Eqs.~44! and ~45!. In
Appendix D, we decompose the map into a nonstocha
and a stochastic steps. Using the nonstochastic step
transform the Fourier coefficients off Qn

(u) into the Fourier

coefficients of an intermediate distributionf n8(u8). We ex-
press the stochastic step by transforming a Gaussian d
bution on the real line to a distribution function on the circ

f J~v,j!5 (
i 52`

`
1

A2pv
e@~j1 i !2/2v#. ~46!

The Fourier coefficients of Eq.~46! are

jm
a ~v !52e22p2m2v ~47!

and

jm
b ~v !50, ~48!

where the superscriptsa and b refer to the cosine and sin
terms, respectively. Finally, using the stochastic transform
tion ~see Appendix D!, we transform the Fourier coefficient
of the intermediate distribution to the Fourier coefficients
the final distribution. We find a linear relationship

an95tn0
aaa01 (

m51

`

tnm
aa am1 (

m51

`

tnm
ab bm ~49!

and

bn95tn0
baa01 (

m51

`

tnm
ba am1 (

m51

`

tnm
bb bm . ~50!

The coefficientst in Eqs.~49! and~50! are given by integrals
~D36!–~D41! derived in Appendix D. Defining the matrix

f u i
Y5F a0

b1

a1

b2

A
G , f u i 11

9Y 5F a09

b19

a19

b29

A

G ,
ic
we

tri-
:

a-

f

T̄Y5F t0,0
aa t0,1

ab t0,1
aa t1,2

ab •••

t1,0
ba t1,1

bb t1,1
ba t1,2

bb •••

t1,0
aa t1,1

ab t1,1
aa t1,2

ab •••

t2,0
ba t2,1

bb t2,1
ba t2,2

bb •••

A A A A �

G , ~51!

we can express Eqs.~49! and ~50! in the compact form

f u t11
9Y 5T̄Y• f u i

Y . ~52!

The Fourier vectorf u i
Y and its associated density functio

will be invariant when

f u i 11
9Y 5 f u i

Y . ~53!

The invariance will exist if the matrixT̄Y has an eigenvalue
equal to unity. The vector associated with the unity eige
value contains the Fourier coefficients of the invariant d
sity function. We can use these coefficients to reconstruct
density function through Eqs.~42! or ~43!.

We choose where to truncate the infinite matrixT̄Y by first
noting that accurate approximations of narrow density fu
tions by a Fourier series requires large numbers of coe
cients. The smallest variancevmin of Eq. ~40! sets a lower
bound to the width of the invariant distribution, and we lim
the size of the infinite matrix based on the distribution~46!

with parametervmin . If we choose to limit the length off u i
Y to

N, whereN is the smallest integer, such that

0.01>jN
a ~vmin!52e22p2N2vmin, ~54!

we are guaranteed that any density function coefficie
greater thanN will represent less than 1% of overall prob
ability. We illustrate the procedure for a system with a ra
dom frequency triangular input signal

gf„Q~ t !…5T„Q~ t !… ~55!

in which Q(t) is the integral of the Ornstein-Uhlenbeck pr
cess with parametersA50.0193 andt50.870, and with a
receiving DPLL having parametersf 0r50.85 andbr50.45.
The minimum of Eq.~40! for this set of parameters is

vmin50.018. ~56!

Using Eq.~54!, we determine that the fourth Fourier coeffi
cient of the noise never exceeds 0.01. We choose vectof
which have nine components. Using numerical integrat

and Eqs.~D36!–~D41!, we calculateT̄Y , and determine its
eigenvalues to be

$1,0.434,20.003610.046i ,20.003620.0046i ,20.0063,

20.0021,20.0015,,1024,,1024%. ~57!

The eigenvector associated with the eigenvalue 1 is
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fY invar5@2,20.401,0.0547,20.136,20.036,20.001,

20.015,0.001,0#. ~58!

We use these Fourier coefficients and Eq.~42! to determine
the invariant distribution function shown as the solid line
Fig. 14. The invariant distribution of a simulation of th
same system cannot be distinguished from the solid line
Fig. 14. The parameters of the random process were the
fit model for a feeding signal from a chaotic sinusoidally f
DPLL. For comparison we also plot, as dots in Fig. 14,
invariant distribution of a simulation of the chaotically fe
DPLL system. We find it easiest to determine the synchro
zation behavior of the randomly fed system analytica
through the conditional Lyapunov exponent. This expon
depends only on an invariant distribution, while analytic
calculation of the distribution exponent requires an expl
knowledge of the evolution of the system over time. T
conditional Lyapunov exponentl is a weighted average o
the instantaneous Lyapunov exponentL1. For the random
frequency map,

L1~u!5 lnS U d

du
^Q~u!&U D , ~59!

and, for the deterministic chaotic map,

L1~fn!5 lnS Udfn11

dfn
U D . ~60!

These expressions are the same, so that

L1~u!5 lnS U12
f 0 fbrT 8~u!

f 0r„11brT~u!…2
U D . ~61!

To calculate the conditional Lyapunov exponent, we take
expectation ofL1 over the invariant distribution

FIG. 14. The solid curve is the invariant probability dens
function of the phase sampled by a DPLL with parametersf 0r

50.85 andbr50.45 receiving a random frequency signal, which
Ornstein-Uhlenbeck processf 0 f50.687, A50.0193, and t
50.870. Computer simulation of the density function is indist
guishable from the solid curve. The dotted curve is the invari
distribution of the phase sampled by a DPLL with parametersf 0r

50.85 andbr50.45 receiving a chaotic signal. The chaotic sign
is produced by a ‘‘feeding’’ DPLL with parametersf 0r50.714 and
br50.28 fed by a regular sinusoidal signal with frequency 1.
in
est

e

i-

t
l
t

e

l5E
21/2

1/2

L1~u! f Q~u!du, ~62!

Numerical integration of Eq.~62! using the invariant distri-
bution shown in Fig. 14 givesl50.0737. The simulation of
the deterministic chaotic system givesl50.0879. We repea
the process of calculating approximate invariant distributio
and evaluating Eq.~62! at many points in thef 0rbr param-
eter plane to obtain the contour plot of the condition
Lyapunov exponent shown in Fig. 15, which can be direc
compared with Fig. 12 produced by simulation. Unlike t
simulation in which we can also measure the distribut
exponent to obtain the contour plot Fig. 11, which can
directly compared to our experimental Fig. 10, we can
produce a contour plot of distribution exponent from o
analysis. Even though we cannot easily predict the distri
tion exponent, and cannot easily measure the conditio
Lyapunov exponent, we can make direct comparisons
tween the bold lines in Figs. 10 and 15 because the
measures are identical at the threshold of synchronizat
Through this method, we conclude that our model is a go
approximation of the experiment.

If we define local Lyapunov exponents to be the runni
average of the instantaneous Lyapunov exponents

L j
N5

1

N (
n5 j

j 1N21

Ln
1, ~63!

and then define the limiting variancev of local Lyapunov
exponents to be

v5 lim
N→`

N var~LN!, ~64!

t

l

FIG. 15. Contour plot of conditional Lyapunov exponent det
mined analytically, from invariant distributions. The contou
change in increments of 0.25, and the bold contour line identi
l50.
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the distribution exponents is related to the conditiona
Lyapunov exponentl near the threshold of synchronizatio
by @15#

s5
2l

v
. ~65!

We determine how the distribution exponent varies with
conditional Lyapunov exponent nearl5s50, by taking the
derivative of Eq.~65! with respect tol and then settingl
50:

ds

dlU
l50

5
2

v
. ~66!

We test Eq.~66! through simulation by varying the param
eter br at a particular value off 0r , so that we cross the
threshold of synchronization, measuring the conditio
Lyapunov exponent and the distribution exponent along
path. In Fig. 16, we show the relationship between the t
measures of synchronization along two pathsf 0r50.35 and
f 0r50.75. We measure boths and l as they change sign
together, and from these measurements calculate the va
of ds/dlul50 shown in column 1 of Table I. We compar
the measured values of the slopes with predictions resu
from the use of simulated measurements ofv within Eq. ~66!
shown in column 2 of Table I. Our analytical model can a

FIG. 16. Plot of the distribution exponent vs the condition
Lyapunov exponent. Both exponents were measured from sim
tions of ‘‘receiving’’ DPLL’s fed by Ornstein-Uhlenbeck random
frequency processes. The longer path fixesf 0r50.35 and variesbr ,
while the shorter line fixesf 0r50.75 and variesbr .

TABLE I. Comparisons of the values ofds/dlul50 measured
from the plot in Fig. 16, the values predicted by Eq.~66! through
simulation measurement ofv, and the values predicted by Eq.~66!
through the approximate predictions ofv from analysis.

Condition for
l5s50

ds

dl
U
l50

Measured from
Simulation

ds

dl
U
l50

Predicted
by v

ds

dl
U
l50

Predicted from
analysis

f 0r br

0.35 0.134 1.4 1.6 2.6
0.75 0.261 0.82 0.91 0.89
e

l
is
o

es

g

be used to predict the slope roughly. We approximatev by
the variance of the instantaneous Lyapunov exponent wh
we calculate similarly to Eq.~62!,

v5 lim
N→`

N var~LN!'var~L1!5E
21/2

1/2

„L1~u!…2f Q~u!du.

~67!

These results are contained in column 3 of Table I.

VI. CONCLUSION AND DISCUSSION

We used a system of three DPLL’s to study chaotic s
chronization both experimentally and analytically. O
‘‘feeding’’ DPLL produced a chaotic signal which was th
input for the other two ‘‘receiving’’ DPLL’s, which were
nearly identical to each other. In certain parameter regim
we observed synchronization between the two receiv
DPLL’s. A linear scaling region in a plot of log of probabil
ity versus the log of separation gives a measure of the de
of synchronization and the magnitude of the system diff
ences. The slope of this line is the distribution exponens
which quantifies the degree of synchronization: the m
positive the slope, the more the two systems are unsync
nized; the more negative the slope, the more the systems
synchronized.

We compared the degree of synchronization in our exp
mental DPLL system with the degree of synchronization
the equations that simulate the experiment using the di
bution exponent. For the simulation, we also computed
Lyapunov exponent. We developed a model of the DP
system by replacing the chaotic output of the first DPLL w
a random frequency process. We analyzed the synchron
tion behavior of this model through the condition
Lyapunov exponent, and showed that the results were
good agreement with the numerical simulation. Thus we c
cluded that the model could be used to approximate
Lyapunov exponent of the simulated system. The conditio
Lyapunov exponent of the model was then compared w
experimental values of the distribution exponent near
threshold of synchronization, where the theory relates
two measures of synchronization giving reasonable ag
ment. We concluded that a chaotic input can be replaced
noise for modeling our synchronizing system.

The contour plots of distribution exponent in Figs. 10 a
11 differ most from the contour plots of conditiona
Lyapunov exponent in Figs. 12 and 15 in the lower rig
corner of the plots, where the two systems are strongly
synchronized. This aberration can be overcome by us
groups of three or more systems. One can define an ave
separation for larger numbers of nearly identical syste
and study the behavior of the density function describing t
separation@17#. The maximum distribution exponent pos
sible for these larger groups of systems increases bey
unity, and we expect large values of the distribution a
conditional Lyapunov exponent to be in closer agreemen

The scope of this paper only encompassed measurem
of the synchronization of the two ‘‘receiving’’ systems. Be
cause the signal from the feed differs from the output of
receiver, synchronization of the ‘‘receiving’’ systems wi
the ‘‘feeding’’ system falls into the realm of generalized sy

l
a-
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FIG. 17. Experimental circuit diagram. All unlabeled capacitors are bypass capacitors for the power supplies and are 0.1mF.
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chronization, which we did not address. However, our
perimental and simulation systems were arranged alm
identically to those used by Abarbanel, Rulkov, and Su
chik to measure generalized synchronization using the a
iliary systems approach@4#. They concluded that synchron
zation of the two ‘‘receiving’’ ~or response! systems with
each other indicates a generalized synchronization of e
with the first system. Their new simple test replaces involv
computation@3,24#. For experimental measurement of ge
eralized synchronization through the auxiliary systems
proach, we propose using the distribution exponent.
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APPENDIX A

Figure 17 shows the full circuit diagram of the expe
ment. Integrated circuits~IC’s! 1 f -4 f make up the feeding
DPLL and IC’s 1r -4r make up the receiving DPLL’s. The
VCO’s ~IC1! produce triangular waves. The voltage fr
quency characteristics of IC’s 1r are ultralinear, but the tri-
-
st
-
x-

ch
d
-
-

ly

angular waves produced are not symmetric like those of
1 f . The voltage that determines the frequency of this wa
comes from a sample and hold amplifier~IC2!. The param-
eters of all DPLL’s are tuned by using the potentiomet
(P1 –P4) attached to IC2.P1 andP2 changef 0 , while P3
and P4 changeb. When the control input of ICZ is low it
samples and when the input is high, the IC holds the app
voltage. Our model@Eqs. ~23! and ~24!# assumes that an
instantaneous sample is taken. This is approximated usi
one-shot integrated circuit IC3. The pulse generated by
circuit goes low for 0.87ms, which is only 0.1% of a typica
oscillation period, and results in a sample within 0.1% of t
true value. IC4, which triggers a pulse in the one shot, is
by the square wave output of the VCO~IC1!, and sharpens
the leading edge of this signal eliminating VCO noise whi
might make that transition ambiguous.

Operation of the circuit at a particular point in th
f 0 fbf f 0rbr parameter space requires careful adjustment o
the potentiometers (P1 –P8) in the diagram. To tune the
circuit before operation we remove all dashed input conn
tions, so that known voltages can be applied to the VCO,
voltage to frequency characteristics can be accurately m
sured. By measuring the voltage to frequency characteris
of the two VFC320’s and adjusting the potentiomete
(P5r –P8r ), we match those characteristics to those sho
in Fig. 6~a!. More importantly, we adjust the voltage fre
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quency characteristics of the VFO320’s to be nearly ident
to each other as shown in Fig. 6~b!. Next the VCO (IC1r ) is
reconnected to the SH (IC2r ). We measure the range of th
input signalgc(t) to IC2r , which comes from IC1f . The
lowest voltage in this range typically 2.4 V should produce
frequency of f 0r2br , while the highest voltage, typically
9.6 V, should produce a frequency off 0r1br . By adjusting
the potentiometersP1r12P4r1 and applying the known
upper and lower voltages in the input range, we tune the
‘‘receiving’’ DPLL to the parametersf 0r

1 andbr
1. By adjust-

ing P1r22P4r2 we assure that the two amplifiers diffe
from each other by much less than one part in 1000 and
f 0r

1 ' f 0r
2 andbr

1'br
2. Once all of the dashed wires are reco

nected, the circuit operates at the desired point in param
space.

To make measurements of the synchronization beha
of this circuit we use a data acquisition board made by N
tional Instruments. An on-board 10-MHz clock runs tw
counters, each of which has an input from OUTr1 and
OUT r2. When these inputs go from low to high, the com
puter reads the value of the counters, which measure
within 0.1 ms when the two DPLL loops sampled. Labvie
software is then used to process this data.

APPENDIX B

We show that the maximum value for the distributio
exponent between two systems is unity by considering
systems on the circle@2 1

2 , 1
2 ) which are completely unsyn

chronized. We model these two systems with random v
ables. The statesw and x of the two systemsw are repre-
sented by the random variablesW andX, respectively, which
are uniformly distributed between@2 1

2 , 1
2 ). We assume tha

the two random variablesW and X are independent of on
another. The linear differencer between the two random
variables is the random variableR,

R5uX2Wu, ~B1!

defined on the circle@2 1
2 , 1

2 ), such that any differences tha
fall outside @2 1

2 , 1
2 ) are mapped back into the interv

through identification of the integer multiples. The large
separationr that can occur betweenw andx is 1

2 . The den-

sity function of r is uniformly distributed between@0,1
2 #,

f R~r !52, 0<r< 1
2 . ~B2!

Defining a new random variableZ,

Z5 ln~R!, ~B3!

and transforming Eq.~B2!, we obtain

f Z~z!52ez, z< ln~ 1
2 !. ~B4!

Taking the logarithm of Eq.~B4! gives

ln„f Z~z!…5 ln~2!1z, z< ln~ 1
2 !. ~B5!

The slope of ln„f Z(z)… vs z, which is the distribution expo-
nent, is unity.
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APPENDIX C

At one sampling instant of the receiving DPLL, we a
sume the phaseu~0! of the feeding signal to be a sure var
able with fixed value, and the frequency of the signalF(0) to
be a random variable with the Ornstein-Uhlenbeck ste
state distribution. In steady state the frequencyF(0) of the
feeding signal at the time of the sample is a normally distr
uted random variable with meanf 0 f and varianceA. We
decompose this into the average frequencyf 0 f , which is a
sure variable, and the change from that averageDF(0),
which is a normal random variable with mean 0 and varian
A:

F~0!5 f 0 f1DF~0!. ~C1!

After a length of timeDt,

Dt5tn112tn5
1

f 0r~11brcn!
5

1

f 0r„11brgf~u!…
,

~C2!

a new sample of the DPLL is taken at a phase given by
random variableQ(Dt), which depends on both the phas
u(0) and the frequencyF(0) of the initial sample. The av-
erage value ofQ is

^Q~Dt !&5Š^Q~Dt !&Q~Dt !‹F~0! , ~C3!

where the expectation is over the phase variable and the
dom frequency variableF(0) and is a function of the
sampled phaseu~0!. To determine this expectation, we co
dition the inner expectation onF(0) by assuming that we
know the value of the random variableDF(0) to beD f (0),
a fixed value:

Š^Q~Dt !&Q~Dt !‹F~0!5Š^Q~Dt !uDF~0!5D f ~0!&Q~Dt !‹F~0! .

~C4!

We decompose the random phaseQ(Dt) into its previous
valueu~0!, the constant increaseDu0(Dt) due to the average
frequency which is not random, and the random deviation
phaseDQ(Dt):

Q~Dt !5u~0!1Du0~Dt !1DQ~Dt !. ~C5!

The second term on the right side results from the aver
frequencyf 0 f and is the fixed function

Du0~Dt !5 f 0 fDt. ~C6!

We substitute Eq.~C6! into Eq. ~C5!, and take the condi-
tional expectation

^Q~Dt !uDF~0!5D f ~0!&Q~Dt !

5^u~0!uDF~0!5D f ~0!&1^ f 0 fDtuDF~0!5D f ~0!&

1^DQ~Dt !uDF~0!5D f ~0!&. ~C7!

The first two terms on the right hand side are sure variab
so we can drop those expectations. The third term on
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right hand side is the integral of the random processDF(t).
This average for the Ornstein-Uhlenbeck process is@23#

^DQ~Dt !uDF~0!5D f ~0!&Q~Dt !5D f ~0!t~12e2Dt/t!.
~C8!

Equation~C7! simplifies to

^Q~Dt !uDF~0!5D f ~0!&Q~Dt !

5u~0!1 f 0 fDt1D f ~0!t~12e2Dt/t!

~C9!

We now take the expectation overDF(0), which is the same
as taking the expectation overF(0),

Š^Q~Dt !uDF~0!5D f ~0!&Q~Dt !‹DF~0!

5u1 f 0 fDt1^DF~0!&DF~0!t~12e2Dt/t!.

~C10!

BecauseDF(0) is a normal random variable with mean zer

^DF~0!&DF~0!50. ~C11!

Hence Eq.~C10! simplifies to

^Q~Dt !&5u1 f 0 fDt. ~C12!

To obtain the variance

^Q~Dt !2&2^Q~Dt !&25Š^Q~Dt !2&Q~Dt !‹F~0!

2Š^Q~Dt !&Q~Dt !‹F~0!
2 , ~C13!

note that from Eq.~C12!

^Q~Dt !&25~u1 f 0 fDt !2. ~C14!

We take the conditional expectation of the left term,

^Q~Dt !2&5Š^Q~Dt !2uDF~0!5D f ~0!&Q~Dt !‹DF~0! .
~C15!

The inner expectation is related to the variance through

^Q~Dt !2uDF~0!5D f ~0!&Q~Dt !

5^Q~Dt !uDF~0!5D f ~0!&Q~Dt !
2

1var$Q~Dt !uDF~0!5D f ~0!%Q~Dt ! .

~C16!

The first term on the right side is evaluated using Eq.~C9!,

^Q~Dt !uDF~0!5D f ~0!&Q~Dt !
2

5~u1 f 0 fDt !212~u1 f 0 fDt !D f ~0!t~12e2Dt/t!

1@D f ~0!t~12e2Dt/t!#2. ~C17!

The second term of Eq.~C16! is a standard characteristic o
the Ornstein-Uhlenbeck process@23#,
,

var$Q~Dt !uDF~0!5D f ~0!%Q~Dt !

52AtFDt22t~12e2Dt/t!1
t

2
~12e22~Dt/t!!G . ~C18!

Substituting Eqs.~C17! and~C18! into Eq.~C16!, and taking
the expectation ofDF(0), gives

Š^Q~Dt !2uDF~0!5D f ~0!&Q~Dt !‹DF~0!

5~u1 f 0 fDt !212~u1 f 0 fDt !

3^DF~0!&DF~0!t~12e2Dt/t!

1^DF~0!2&DF~0!t
2~12e2Dt/t!2

12AtFDt22t~12e2Dt/t!

1
t

2
~12e22~Dt/t!!G . ~C19!

The steady state implies Eq.~C11!, and also implies that

^DF~0!2&DF~0!5A. ~C20!

Substituting Eqs.~C11! and ~C20! into Eq. ~C19! gives

Š^Q~Dt !2uDF~0!5D f ~0!&Q~Dt !‹DF~0!

5~u1 f 0 fDt !21At2~12e2Dt/t!2

12AtFDt22t~12e2Dt/t!

1
t

2
~12e22Dt/t!G , ~C21!

We substitute Eqs.~C14! and~C21! into Eq.~C13!, and sim-
plify, to determine the variance

^Q~Dt !2&2^Q~Dt !&252At~Dt2t1te2Dt/t!.
~C22!

Equations~C12! and ~C22! are the mean and variance of
Gaussian random variable, and together they specify
probability distribution of phase of a new sample of the ra
dom frequency input signal.

APPENDIX D

To determine the coefficientst more easily, we decom
pose the stochastic map of Eqs.~39! and~40! into two steps:
stochastic and nonstochastic. Consider thenth sample to be
the sure variableun . The first step of the map is nonstocha
tic, and maps the sure variableun to a new sure variable
un11 as dictated by Eq.~39!. This is a simple transformation
The second, stochastic, step spreads the sure variableun11
into the random variableQn11 . Because the new random
variableQn11 is the integral of a Gaussian random proce
it is normally distributed with meanun11 and variancev,
which are functions ofu through Eqs.~39! and~40!. We can
view Qn11 as arising from the addition of the sure variab
un11 , and the random variableJ, which is normally distrib-
uted with the same variancev asQn11 but with mean 0. The
nth sample is not sure, but instead is the random variableQn
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which is distributed with density functionf Qn
(u).

We expressf Qn
(u) in terms of its Fourier series

f Qn
~u!5

a0

2
1 (

n51

`

ancos~2pnu!1 (
n51

`

bnsin~2pnu!.

~D1!

The coefficientsan andbn are determined through

an52E
21/2

1/2

f Qn
~u!cos~2pnu!du ~D2!

and

bn52E
21/2

1/2

f Qn
~u!sin~2pnu!du. ~D3!

The distribution of this random variable after mapping by t
nonstochastic step of the map is defined to bef

Q
n8

8 (u8) which

terms of a Fourier series, is

f
Q

n8
8 ~u8!5

a08

2
1 (

n51

`

an8cos~2pnu8!1 (
n51

`

bn8sin~2pnu8!.

~D4!

Likewise, we define the distribution after both the nons
chastic and stochastic map steps asf Qn11

9 (u9), and express it

in terms of the Fourier series

f Qn11
9 ~u9!5

a09

2
1 (

n51

`

an9cos~2pnu9!1 (
n51

`

bn9sin~2pnu9!.

~D5!

The last Fourier series required is that for the normally d
tributed random variable used in the stochastic step of
noisy mapJ. While the domains of the density functionsf
are the circle, the domain of the Gaussian density func
defining the stochastic step of the map is the real line.
map numbers from the real line to the circle by identifyi
all numbers separated by integers. This identification tra
forms

f J~v,j8!5
1

A2pv
e2j82/2v, ~D6!

defined over the real line into

f J~v,j!5 (
i 52`

`
1

A2pv
e2~j1 i !2/2v ~D7!

defined over the circle. Because this random variable
pends onv, its density function depends onv,

f J~v,j!5
j0

a~v !

2
1 (

m51

`

jm
a ~v !cos~2pmj!

1 (
m51

`

jm
b ~v !sin~2pmj!, ~D8!
-

-
e

n
e

s-

e-

and in turn the Fourier coefficients of the density functi
depend onv:

jm
a ~v !52E

21/2

1/2

f J~v,j!cos~2pmj!dj ~D9!

and

jm
b ~v !52E

21/2

1/2

f J~v,j!sin~2pmj!dj. ~D10!

If we use Eq.~D7! in Eqs.~D9! and~D10!, the integrals can
be evaluated by exchanging the order of integration and s
mation:

jm
a ~v !52 (

i 52`

` S E
@ i 2~1/2!#

@ i 1~1/2!# 1

A2pv
e2j2/2vcos~2pmj!dj D

~D11!

and

jm
b ~v !52 (

i 52`

` S E
@ i 2~1/2!#

@ i 1~1/2!# 1

A2pv
e2j2/2vsin~2pmj!dj D .

~D12!

We obtain the results

jm
a ~v !52E

2`

` 1

A2pv
e2j2/2vcos~2pmj!dj52e22p2m2v

~D13!

and

jm
b ~v !52E

2`

` 1

A2pv
e2j2/2vsin~2pmj!dj50.

~D14!

The random variableu9 is the sum of two random variable
u8 and J. The density function of the sum of two rando
variables is the convolution of the individual density fun
tions

f Qn11
9 ~u9!5E

21/2

1/2

f J~v,u92u8! f
Q

n8
8 ~u8!du8. ~D15!

We use the expression

an952E
21/2

1/2

f Qn11
9 ~u9!cos~2pnu9!du9, ~D16!

for an9 together with Eq.~D15! to yield

an952E
21/2

1/2 H E
21/2

1/2

f J~v,u92u8! f
Q

n8
8 ~u8!du8J

3cos~2pnu9!du9. ~D17!

Because all functions within both integrals are periodic,
interchange the order of the integrals
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an952E
21/2

1/2 H E
21/2

1/2

f J~v,u92u8!cos~2pnu9!du9J
3 f

Q
n8

8 ~u8!du8. ~D18!

We examine just the term in brackets substituting Eq.~D8!
for f J(v,j):

E
21/2

1/2

f J~v,u92u8!cos~2pnu9!du9

5E
21/2

1/2 j0
a~v !

2
cos~2pnu9!du9

1E
21/2

1/2 S (
m51

`

jm
a ~v !cos„2pm~u92u8!…D

3cos~2pnu9!du9

1E
21/2

1/2 S (
m51

`

jm
b ~v !sin„2pm~u92u8!…D

3cos~2pnu9!du9. ~D19!

From Eq.~D14!, the third term on the right hand side is zer

E
21/2

1/2

f J~v,u92u8!cos~2pnu9!du9

5E
21/2

1/2 j0
a~v !

2
cos~2pnu9!du9

1E
21/2

1/2 S (
m51

`

jm
a ~v !cos„2pm~u92u8!…D

3cos~2pnu9!du9. ~D20!

We interchange the order of integration and summation

E
21/2

1/2

f J~v,u92u8!cos~2pnu9!du9

5
j0

a~v !

2 E
21/2

1/2

cos~2pnu9!du9

1 (
m51

`

jm
a ~v !E

21/2

1/2

cos„2pm~u92u8!…

3cos~2pnu9!du9. ~D21!

Because of the orthogonality of sinusoidal integrals, E
~D21! can be greatly simplified. We introduce the Kro
necker delta

dnm5 H1,
0,

n5m
nÞm. ~D22!

The first integral on the right hand side is

E
21/2

1/2

cos~2pnu9!du95dn0 . ~D23!
.

The second integral is

E
21/2

1/2

cos„2pm~u92u8!…cos~2pnu9!du9

5dnm

cos~2pnu8!

2
. ~D24!

Taking Eqs.~D23! and ~D24!, substituting into Eq.~D21!,
and carrying out the sums, gives

E
21/2

1/2

f J~v,u92u8!cos~2pnu9!du9

5H j0
a~v !

2
, n50

jn
a~v !

cos~2pnu8!

2
, nÞ0.

~D25!

But

j0
a~v !

2
5jn

a~v !
cos~2pnu8!

2
, n50, ~D26!

so we simplify Eq.~D25! to

E
21/2

1/2

f J~v,u92u8!cos~2pnu9!du95jn
a~v !

cos~2pnu8!

2
.

~D27!

Substituting Eq.~D27! into Eq. ~D18! gives

an95E
21/2

1/2

jn
a~v !cos~2pnu8! f

Q
n8

8 ~u8!du8. ~D28!

We transform from the variableu8 to the variableu using the
nonstochastic map~39!, u85^Q(u)&.

The variable substitution works smoothly because
probability density and the differentials transform from o
variable to another as@22#

f
Q

n8
8 ~u8!du85 f Qn

~u!du. ~D29!

Carrying out the substitution, we have

an95 Ê
Q~21/2!&21

^Q~1/2!&21

jn
a~v !cos@2pn^Q~u!&# f Qn

~u!du.

~D30!

Because the integrand, the function^Q~u!&, the variableu9,
and the variableu are all on the circle and periodic with
period 1, we shift the limits of Eq.~D30! to run from2 1

2 to
1
2 ,

an95E
21/2

1/2

jn
a~v !cos„2pn^Q~u!&…f Q i

~u!du. ~D31!

To determine the relation between the fourier coefficients
the distribution of one sample and the next, we substitute
~D1! into Eq. ~D31! changing the variable of summation i
Eq. ~D1! to m



io

q

f
ple
e

57 5465EXPERIMENTAL MEASUREMENT OF THE DEGREE OF . . .
an95E
21/2

1/2

jn
a~v !cos„2pn^Q~u!&…

3S a0

2
1 (

m51

`

amcos~2pmu!

1 (
m51

`

bmsin~2pmu!D du. ~D32!

We interchange the order of the integration and summat

an95S E
21/2

1/2

jn
a~v !

cos@2pn^Q~u!&#

2
du D a0

1 (
m51

` S E
21/2

1/2

jn
a~v !cos@2pn^Q~u!&#

3cos~2pmu!du D am

1 (
m51

` S E
21/2

1/2

jn
a~v !cos@2pn^Q~u!&#

3sin~2pmu!du D bm . ~D33!

We write all of the dependencies explicitly, substituting E
~D13! for the coefficientsjn

a(v):

an95S E
21/2

1/2

2e22p2m2v~u i !
cos„2pn^Q~u i !&…

2
du i D a0

1 (
m51

` S E
21/2

1/2

2e22p2m2v~u i !cos„2pn^Q~u i !&…

3cos~2pmu!du i D am

1 (
m51

` S E
21/2

1/2

2e22p2m2v~u i !cos„2pn^Q~u i !&…

3sin~2pmu!du i D bm . ~D34!

Through similar calculations as Eqs.~D16!–~D34! we find
an expression forbn9 :
I.

s.
n,

.

bn95S E
21/2

1/2

2e22p2m2v~u i !
sin„2pn^Q~u i !&…

2
du i D a0

1 (
m51

` S E
21/2

1/2

2e22p2m2v~u i !sin„2pn^Q~u i !&…

3cos~2pmu!du i D am

1 (
m51

` S E
21/2

1/2

2e22p2m2v~u i !sin„2pn^Q~u i !&…

3sin~2pmu!du i D bm . ~D35!

Equations~D34! and ~D35! relate the fourier coefficients o
the random variable density function at the time of a sam
to the Fourier coefficients of the density function at the tim
of the next sample. We define the coefficients

tn0
aa5E

21/2

1/2

jn
a~v !

cos„2pn^Q~u!&…

2
du, ~D36!

tnm
aa 5E

21/2

1/2

jn
a~v !cos„2pn^Q~u!&…cos~2pmu!du,

~D37!

tnm
ab 5E

21/2

1/2

jn
a~v !cos„2pn^Q~u!&…sin~2pmu!du,

~D38!

tn0
ba5E

21/2

1/2

jn
a~v !

sin„2pn^Q~u!&…

2
du, ~D39!

tnm
ba 5E

21/2

1/2

jn
a~v !sin„2pn^Q~u!&…cos~2pmu!du,

~D40!

and

tnm
bb 5E

21/2

1/2

jn
a~v !sin@2pn^Q~u!&#sin~2pmu!du,

~D41!

and rewrite Eqs.~D34! and ~D35! as Eqs.~49! and ~50!.
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